RII Track-4: NSF:Assessing Dynamic Connectivity of Streams and Wetlands across Spatial and Human Gradients with Deep Learning

RII Track-4:NSF:利用深度学习评估跨空间和人类梯度的溪流和湿地的动态连通性

基本信息

  • 批准号:
    2229616
  • 负责人:
  • 金额:
    $ 25.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-15 至 2024-12-31
  • 项目状态:
    已结题

项目摘要

Wetlandscapes, the interconnected tapestries of streams and wetlands, are crucial for maintaining water quality standards, yet their coverage has dramatically decreased in recent centuries due to development and agricultural expansion. The extent to which these systems remove pollutants, such as nitrate, can greatly impact downstream aquatic systems. There exist major gaps in understanding the dynamic connections that act to intercept, retain, and transmit nitrate through wetlandscapes and the extent to which natural and human features control the strength of these connections. These gaps have limited ability to predict the function of these landscapes and manage them effectively. This research will provide an opportunity for a tenure-track assistant professor and a graduate student to propel research in the area of modeling wetlandscape connectivity and water quality through collaborations with the USEPA Center for Environmental Measurement and Modeling (CEMM) in Cincinnati, Ohio. The PI and a student will work with CEMM scientists, who have established state-of-the-science process-based models, to advance the modeling frontier with a deep learning modeling framework that can overcome the limitations of existing approaches. The PI’s home jurisdiction, Kansas, has lost 48% of its wetland coverage. Thus, this effort will improve infrastructure for modeling, managing, and maintaining these landscape features through the education of students and the development of open access tools to be shared with watershed scientists, managers, and stakeholders. This Research Infrastructure Improvement Track-4 EPSCoR Research Fellows (RII Track-4:NSF) project would provide a fellowship to an Assistant Professor and training for a graduate student at the University of Kansas. This work would be conducted in collaboration with researchers at the USEPA Center for Environmental Measurement and Modeling (CEMM). Historically, wetlandscape connectivity and contaminant removal efficiency has been viewed through a static lens whereby, due to data and computational limitations, the question often posed is “What is the net removal of nitrate over seasonal or annual periods?”. However, streams and wetlands are highly dynamic and there exist moments where disproportionate removal occurs. Further, it is often assumed that wetlandscape efficacy is controlled by hydrology, which determines the residence time of nitrate, but recent work shows a disconnect between efficacy at the individual wetland-scale, where removal appears high, compared to the catchment scale where overall removal decreases. Two knowledge gaps exist that the proposed research aims to close. The first is a move beyond a static assessment of connectivity and the second is an evaluation of the natural and human controls of wetlandscape removal efficiency. The research team will collaborate with researchers at the USEPA Center for Environmental Measurement and Modeling (CEMM) who have developed state-of-the-science, process-based wetland models. While process-based models can be effective tools, they are often highly parameterized to a single location and difficult to transfer across scales. Thus, the research objectives of this project are to (1) improve the representation of dynamic wetlandscape connectivity with a deep learning model and benchmark that model performance against existing process-based models and (2) quantify the hydrologic, anthropogenic, and geomorphic controls on nitrate removal efficacy using deep learning modeling across regions and scales. This RII Track-4:NSF fellowship will provide an opportunity for the PI to generate fundamental advances to identify, quantify, and predict wetlandscape behavior and to develop tools that stakeholders can use for improved land management outcomes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
湿地景观是相互联系的溪流和湿地的织锦,对维持水质标准至关重要,但由于发展和农业扩张,它们的覆盖率在最近几个世纪大幅下降。这些系统去除硝酸盐等污染物的程度可能会对下游水生系统产生很大影响。在理解通过湿地截留、保留和传输硝酸盐的动态联系以及自然和人为特征控制这些联系强度的程度方面,存在着重大差距。这些差距对预测这些景观的功能和有效管理它们的能力有限。这项研究将为终身教职助理教授和研究生提供机会,通过与位于俄亥俄州辛辛那提的美国环保局环境测量和建模中心(CEMM)的合作,推动湿地景观连通性和水质建模领域的研究。PI和一名学生将与CeMM的科学家合作,他们已经建立了基于科学过程的最先进的模型,通过可以克服现有方法局限性的深度学习建模框架来推进建模前沿。少年派的家乡堪萨斯州已经失去了48%的湿地覆盖率。因此,这项工作将通过教育学生和开发开放获取工具,与分水岭科学家、管理人员和利益攸关方共享,改善建模、管理和维护这些景观特征的基础设施。研究基础设施改进Track-4 EPSCoR研究学者(RII Track-4:NSF)项目将为堪萨斯大学的一名助理教授提供奖学金,并为一名研究生提供培训。这项工作将与美国环保局环境测量和建模中心(CeMM)的研究人员合作进行。在历史上,湿地景观的连通性和污染物去除效率一直是通过静态的视角来看待的,因此,由于数据和计算的限制,经常提出的问题是“季节或年度期间硝酸盐的净去除是多少?”然而,溪流和湿地是高度动态的,存在发生不成比例的去除的时刻。此外,人们通常认为湿地景观的功效是由水文学控制的,而水文决定了硝酸盐的停留时间,但最近的研究表明,与总去除减少的集水尺度相比,个别湿地尺度的功效之间存在脱节,在湿地尺度上,硝酸盐的去除似乎很高。拟议中的研究旨在弥合两个知识差距。第一个是超越对连通性的静态评估,第二个是对湿地景观移除效率的自然和人为控制的评估。研究小组将与美国环保局环境测量与建模中心(CeMM)的研究人员合作,后者开发了最先进的、基于过程的湿地模型。虽然基于流程的模型可能是有效的工具,但它们通常高度参数化到单个位置,难以跨比例传输。因此,本项目的研究目标是(1)通过深度学习模型和基准改进动态湿地景观连通性的表示,并对照现有的基于过程的模型对性能进行建模;(2)使用跨区域和跨尺度的深度学习模型来量化水文、人为和地貌对硝酸盐去除效果的控制。RII Track-4:NSF奖学金将为PI提供机会,以产生识别、量化和预测湿地景观行为的根本进展,并开发利益相关者可用于改善土地管理结果的工具。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Admin Husic其他文献

Establishing performance criteria for evaluating watershed-scale sediment and nutrient models at fine temporal scales
建立用于在精细时间尺度上评估流域尺度沉积物和养分模型的性能标准
  • DOI:
    10.1016/j.watres.2025.123156
  • 发表时间:
    2025-04-15
  • 期刊:
  • 影响因子:
    12.400
  • 作者:
    Aayush Pandit;Sarah Hogan;David T. Mahoney;William I. Ford;James F. Fox;Christopher Wellen;Admin Husic
  • 通讯作者:
    Admin Husic
Hydrologic pathways and baseflow contributions, and not the proximity of sediment sources, determine the shape of sediment hysteresis curves: Theory development and application in a karst basin in Kentucky USA
水文路径和基流贡献,而非泥沙源的接近程度,决定了泥沙滞后曲线的形状:理论发展及其在美国肯塔基州一个岩溶盆地中的应用
  • DOI:
    10.1016/j.jhydrol.2024.132300
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Leonie Bettel;Jimmy Fox;Admin Husic;Tyler Mahoney;Arlex Marin-Ramirez;Junfeng Zhu;Ben Tobin;Nabil Al-Aamery;Chloe Osborne;Brenden Riddle;Erik Pollock
  • 通讯作者:
    Erik Pollock

Admin Husic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Admin Husic', 18)}}的其他基金

CAREER: Dynamic connectivity: a research and educational frontier for sustainable environmental management under climate and land use uncertainty
职业:动态连通性:气候和土地利用不确定性下可持续环境管理的研究和教育前沿
  • 批准号:
    2340161
  • 财政年份:
    2024
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Continuing Grant
Collaborative Research: Can Human-Induced Turbidity Currents Enable Sustainability of Freshwater Reservoirs?
合作研究:人为引起的浊流能否实现淡水水库的可持续性?
  • 批准号:
    2317834
  • 财政年份:
    2023
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant

相似海外基金

RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
  • 批准号:
    2327349
  • 财政年份:
    2024
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
  • 批准号:
    2327466
  • 财政年份:
    2024
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了