Collaborative Research: Real time Chemical Imaging of Nanoparticle Templated Tubulin-Polymerization

合作研究:纳米颗粒模板化微管蛋白聚合的实时化学成像

基本信息

  • 批准号:
    2229986
  • 负责人:
  • 金额:
    $ 35.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

Nanoparticles can be designed in a variety of sizes, shapes, and functionalities. This project will research the interaction of nanoparticles with specific cellular proteins that are important for life processes and to develop effective therapies for diseases such as cancer. The PIs will focus on microtubules, which are hollow protein cylinders that impart structural rigidity to cells, enable motility, and serve as conduits for intracellular transport. The ability of these materials to polymerize and depolymerize affects cellular processes and has been the subject of extensive research interest over decades. Understanding how to control the disruption of these protein structures can reduce cellular structural rigidity and serve as a target for cancer therapy. Nanoparticle-mediated inhibition of tubulin polymerization has been reported briefly; however, a general mechanistic understanding is still lacking. Such knowledge can further scientific understanding and pave the way to designing novel therapies. In this project the PIs will study the influence of nanoparticles on the polymerization of microtubules (and other filaments) both from a biochemical and structural perspective. To identify and quantitatively evaluate the chemical association of the nanoparticles with tubulin during polymerization, the PIs will utilize infrared spectroscopy, machine learning tools and other biochemical techniques. In terms of analytic ability, the integrated toolkit of measurement devices, imaging, and data analysis will be a valuable resource to investigate molecular-environmental interactions that may be expanded to other biological systems. This knowledge could have widespread implications for the comprehension of nanoparticle-based novel cancer therapeutics. For educational and outreach activities, the collaborating PIs will develop an exploratory program course intended for freshman (science and non-science majors) to enhance their education through greater interaction with faculty in small classes and to learn about research in nanotechnology. The team will specifically contribute to the education of early career and underrepresented students via university-wide programs. The algorithms and data generated during this project will be used as a basis for educational activities from the high school to professional levels. At the core of this project's technical approach is the recognition that a complete understanding of the influence of nanoparticles on microtubules polymerization is possible by applying molecular spectroscopy and imaging. Through this project the PIs will develop best methods to use for tubulin polymerization studies with nanomaterials having various chemical and surface properties. The PIs will harness the advantages of infrared spectroscopy by using recent advances in imaging technology to develop a spatially and temporally resolved approach that illuminates molecular details of microtubules dynamics and quantitatively evaluates the role of nanoparticles in tubulin polymerization. The project includes emerging infrared measurement technology coupled to an infrared transparent, cost-effective microfluidic platform that accurately controls biochemical environments spatiotemporally. Using this platform, the PIs will investigate the biochemistry, kinetics, and structural manifest of microtubules upon association with nanoparticles of varying composition, concentration, size, and surface functionalities. The extent of polymerization will be analyzed using a fluorescence assay. Gel electrophoresis studies will be used to assess the extent of polymerization and the phosphate release pathway will be analyzed to obtain possible mechanistic insight. Microfluidics-assisted infrared imaging of the nanoparticles will be employed to study the modulated microtubules formation to reveal manifestation of a completely different array of secondary structures that may arise from the propensity of select monomer units to adhere together during polymerization. Infrared images of the nanoparticles incubated with polymerized and dried microtubules will reveal nanoparticle spectral signatures of microtubules with aggregated proteins. The main technical contribution is a high-throughput IR imaging method to study protein polymerization in the absence and presence of nanoparticles in the microfluidic continuous flow mixing device and validate the results to facilitate understanding of the nanoparticle-protein interaction. The obtained data will further be investigated with statistical and machine learning approaches. The PIs will work to ensure that the protocols developed here are available to students of all levels, giving them an opportunity to understand the fundamentals of tubulin dynamics with nanotechnology and stimulating their creativity to develop new cancer therapeutics. In addition, the students will participate in dedicated projects, learning about future career opportunities in these fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米颗粒可以设计成各种尺寸、形状和功能。该项目将研究纳米颗粒与特定细胞蛋白质的相互作用,这些蛋白质对生命过程和癌症等疾病的有效治疗都很重要。pi将专注于微管,这是一种中空的蛋白质圆柱体,赋予细胞结构刚性,使其具有运动性,并作为细胞内运输的管道。这些材料的聚合和解聚能力影响细胞过程,几十年来一直是广泛研究的主题。了解如何控制这些蛋白质结构的破坏可以降低细胞结构刚性,并作为癌症治疗的靶点。纳米颗粒介导的微管蛋白聚合抑制已被简要报道;然而,目前仍缺乏对其机理的一般认识。这些知识可以进一步科学理解,并为设计新的治疗方法铺平道路。在这个项目中,pi将从生化和结构的角度研究纳米颗粒对微管(和其他细丝)聚合的影响。为了鉴定和定量评估纳米颗粒与微管蛋白在聚合过程中的化学关联,pi将利用红外光谱,机器学习工具和其他生化技术。在分析能力方面,测量设备,成像和数据分析的集成工具包将是研究分子-环境相互作用的宝贵资源,可能扩展到其他生物系统。这一知识可能对理解基于纳米粒子的新型癌症治疗方法具有广泛的意义。在教育和推广活动方面,合作pi将为新生(理科生和非理科生)开发一门探索性项目课程,通过与教师在小班中进行更多的互动来提高他们的教育水平,并了解纳米技术的研究。该团队将通过大学范围内的项目专门为早期职业和代表性不足的学生的教育做出贡献。在这个项目中产生的算法和数据将作为从高中到专业水平的教育活动的基础。该项目技术方法的核心是认识到,通过应用分子光谱学和成像技术,可以全面了解纳米颗粒对微管聚合的影响。通过该项目,pi将开发最佳方法,用于具有各种化学和表面性质的纳米材料的微管蛋白聚合研究。pi将利用红外光谱的优势,利用成像技术的最新进展,开发一种空间和时间分辨的方法,阐明微管动力学的分子细节,并定量评估纳米颗粒在微管聚合中的作用。该项目包括新兴的红外测量技术,结合红外透明,具有成本效益的微流控平台,精确控制生化环境的时空。利用这个平台,pi将研究微管与不同组成、浓度、大小和表面功能的纳米颗粒的生物化学、动力学和结构特征。聚合的程度将用荧光法分析。凝胶电泳研究将用于评估聚合的程度,磷酸盐释放途径将被分析以获得可能的机制见解。纳米颗粒的微流体辅助红外成像将用于研究调制微管的形成,以揭示完全不同的二级结构阵列的表现,这些二级结构可能是由于聚合过程中选择单体单元粘附在一起的倾向而产生的。与聚合和干燥的微管孵育的纳米颗粒的红外图像将显示与聚集蛋白质的微管的纳米颗粒光谱特征。主要技术贡献是采用高通量红外成像方法研究微流控连续流混合装置中纳米颗粒存在和不存在情况下的蛋白质聚合,并对结果进行验证,以促进对纳米颗粒-蛋白质相互作用的理解。获得的数据将进一步使用统计和机器学习方法进行研究。pi将努力确保这里制定的协议适用于所有水平的学生,让他们有机会了解微管蛋白动力学与纳米技术的基本原理,并激发他们的创造力,以开发新的癌症治疗方法。此外,学生将参与专门的项目,了解这些领域未来的就业机会。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dipanjan Pan其他文献

ENHANCED ANTIANGIOGENIC EFFICACY OF PRODRUG NANOPARTICLES QUANTIFIED WITH MAGNETIC RESONANCE IMAGING
  • DOI:
    10.1016/s0735-1097(11)61592-1
  • 发表时间:
    2011-04-05
  • 期刊:
  • 影响因子:
  • 作者:
    Dipanjan Pan;Ann Schmieder;Nibedita Sanyal;Xiaoxia Yang;Angana Senpan;John Allen;Huiying Zhang;Samuel Wickline;Gregory Lanza
  • 通讯作者:
    Gregory Lanza
Indium Mediated Allylation of β-Chloro-/β-Alkoxy Vinylaldehyde: A Facile One Pot Synthesis of 1-Chloro-/1-Alkoxy Hexa-1,5-diene-3-ol Derivatives
铟介导的 β-氯-/β-烷氧基乙烯醛烯丙基化:一锅法轻松合成 1-氯-/1-烷氧基六-1,5-二烯-3-醇衍生物
  • DOI:
    10.1081/scc-120015553
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Dipanjan Pan;G. Kar;J. Ray
  • 通讯作者:
    J. Ray
Molecular Recognition: Studies on the Synthesis of Methylene Pivotal Bisthiophene Carboxamide Derivatives as Ditopic Receptors for Suberic Acid
分子识别:辛二酸双位受体亚甲基双噻吩甲酰胺衍生物的合成研究
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sulagna Brahma;Dipanjan Pan;J. Ray
  • 通讯作者:
    J. Ray
Compound Nanoparticle 5HMF-Prodrug Formulations for Optimized Anti-Sickling Therapy
  • DOI:
    10.1182/blood-2022-168781
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Stephen C Rogers;Parikshit Moitra;Mary Brummet;Zohreh Safari;Qihong Wang;Joy Okhuevbie;Nancy Anabaraonye;Osheiza Y. Abdulmalik;Martin K. Safo;Nicole Glynn-Cunningham;Jennie Y. Law;Maria R. Baer;Dipanjan Pan;Allan Doctor
  • 通讯作者:
    Allan Doctor
Anti-miR oligo-mediated detection of human salivary microRNAs for mild traumatic brain injury
抗微小RNA寡核苷酸介导的用于轻度创伤性脑损伤的人类唾液微小RNA检测
  • DOI:
    10.1016/j.bios.2025.117333
  • 发表时间:
    2025-06-15
  • 期刊:
  • 影响因子:
    10.500
  • 作者:
    Pranay Saha;André J. van der Vlies;Teresa Aditya;Ketan Dighe;Steven D. Hicks;Dipanjan Pan
  • 通讯作者:
    Dipanjan Pan

Dipanjan Pan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dipanjan Pan', 18)}}的其他基金

Collaborative Research: Real time Chemical Imaging of Nanoparticle Templated Tubulin-Polymerization
合作研究:纳米颗粒模板化微管蛋白聚合的实时化学成像
  • 批准号:
    2153091
  • 财政年份:
    2022
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331401
  • 财政年份:
    2024
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
  • 批准号:
    2331400
  • 财政年份:
    2024
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
  • 批准号:
    2312978
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type II: REFRESH: Revisiting Expanding FPGA Real-estate for Environmentally Sustainability Heterogeneous-Systems
合作研究:DESC:类型 II:REFRESH:重新审视扩展 FPGA 空间以实现环境可持续性异构系统
  • 批准号:
    2324865
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
  • 批准号:
    2226901
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
  • 批准号:
    2226900
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards Engaged, Personalized and Transferable Learning of Secure Programming by Leveraging Real-World Security Vulnerabilities
协作研究:利用现实世界的安全漏洞实现安全编程的参与式、个性化和可转移学习
  • 批准号:
    2235976
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306660
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF/MCB: Repurposing metabolite-responsive aptamers for real-time sensing and dynamic control of Cas6-mediated metabolon assembly
合作研究:NSF/MCB:重新利用代谢物响应适体,用于 Cas6 介导的代谢物组装的实时传感和动态控制
  • 批准号:
    2317399
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Standard Grant
Japan-Germany collaborative research toward simultaneous real-time imaging of cancer pathology and radiotherapy effects
日德合作研究癌症病理和放射治疗效果同步实时成像
  • 批准号:
    23KK0206
  • 财政年份:
    2023
  • 资助金额:
    $ 35.75万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了