Workshop on Trends in Soliton Dynamics and Singularity Formation for Nonlinear Dispersive PDEs
非线性色散偏微分方程孤子动力学和奇点形成趋势研讨会
基本信息
- 批准号:2230164
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will support the 3-day workshop "Trends in Soliton Dynamics and Singularity Formation for Nonlinear Dispersive PDEs" to be held on the campus of Texas A&M University in College Station, Texas, on October 21-23, 2022. The topic of the workshop lies at the forefront of research on nonlinear wave equations. Wave equations are at the heart of a wide range of natural phenomena, including electromagnetism, fluid dynamics, nonlinear optics, quantum mechanics, general relativity, and particle physics. As such, the rigorous mathematical analysis of these equations is fundamental in obtaining a deeper understanding of the world we live in. This workshop aims to bring together leading international experts and junior researchers, providing an opportunity for the younger generation to interact with leaders of the field and to learn about cutting edge mathematical developments. Junior researchers also can present their research in the form of contributed talks. The workshop is structured to create many opportunities for discussions and to foster an environment for collaboration and for the exchange of ideas.The mathematical focus of the workshop is on recent developments in the study of soliton dynamics and singularity formation for nonlinear dispersive PDEs, and on the interplay with developments in related areas. In the context of this workshop, solitons refer, roughly speaking, to solutions to partial differential equations that exhibit some form of coherent structure. It is expected that they play an essential role for the overall dynamics. This is an active and fast developing branch of research, where recent ideas and techniques are finding applications in many other areas. The PIs hope this workshop will provide an opportunity for all participants to learn about the fascinating new developments in this area, to form new collaborations, and to explore interesting connections to other areas. Funds will be used for the accommodation and travel costs for junior participants. More information about the workshop and its goals can be found on the website: https://sites.google.com/tamu.edu/solitons-workshop-tamu/aboutThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonas Luhrmann其他文献
Decay and asymptotics for the one-dimensional Klein-Gordon equation with variable coefficient cubic nonlinearities
具有变系数三次非线性的一维 Klein-Gordon 方程的衰变和渐近
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hans Lindblad;Jonas Luhrmann;Avy Soffer - 通讯作者:
Avy Soffer
Jonas Luhrmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonas Luhrmann', 18)}}的其他基金
CAREER: New Frontiers in the Dynamics of Topological Solitons
职业:拓扑孤子动力学的新领域
- 批准号:
2235233 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Continuing Grant
Conference: Texas Analysis and Mathematical Physics Symposium 2024
会议:2024 年德克萨斯分析与数学物理研讨会
- 批准号:
2331234 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Asymptotic Dynamics of Nonlinear Wave and Dispersive Equations
非线性波和色散方程的渐近动力学
- 批准号:
1954707 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
相似国自然基金
遥感卫星运行趋势预测及异常定位研究
- 批准号:62306082
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于树轮多指标耦合的黄土高原树木生长变化特征及未来趋势研究
- 批准号:42330501
- 批准年份:2023
- 资助金额:224.00 万元
- 项目类别:重点项目
全球海洋潜沉/浮露热输送及其变化趋势
- 批准号:42376031
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
印太暖池区气候年代际变率对上层海洋盐度长期趋势的调制作用
- 批准号:42306026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
21世纪喜马拉雅山冰川对气候响应机理及演化趋势
- 批准号:42371137
- 批准年份:2023
- 资助金额:47.00 万元
- 项目类别:面上项目
相似海外基金
EMBRACE-AGS-Seed: Decadal Trends of Atmospheric Ethane - Building Capacity for Trace Gas Analysis and Modeling at Portland State University
EMBRACE-AGS-Seed:大气乙烷的十年趋势 - 波特兰州立大学痕量气体分析和建模能力建设
- 批准号:
2409413 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
AGS-PRF: Understanding Historical Trends in Tropical Pacific Sea Surface Temperature Patterns
AGS-PRF:了解热带太平洋海面温度模式的历史趋势
- 批准号:
2317224 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Fellowship Award
EMBRACE-AGS-Growth: Compounding Extremes--Trends in, Links among, and Impacts of Marine Heatwaves, Human Heat Stress, and Heavy Precipitation in the Southeast United States
拥抱-AGS-增长:极端情况的复合——美国东南部海洋热浪、人类热应激和强降水的趋势、相互联系和影响
- 批准号:
2407240 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Contemporary Long-Term Homicide Trends in England and Wales in the Period 1977-2019 and a Comparison with Non-Lethal Violence Trends
1977-2019 年英格兰和威尔士当代长期凶杀趋势以及与非致命暴力趋势的比较
- 批准号:
ES/X000575/1 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Research Grant
EAGER: SSMCDAT2023: Database generation to identify trends in inter- and intra-polyhedral connectivity and energy storage behavior
EAGER:SSMCDAT2023:生成数据库以确定多面体间和多面体内连接和能量存储行为的趋势
- 批准号:
2334240 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant