Topologically Enhanced Raman Spectroscopy

拓扑增强拉曼光谱

基本信息

  • 批准号:
    2230400
  • 负责人:
  • 金额:
    $ 33.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Various biochemical sensing techniques are governed by the interface coupling between biochemical molecules and sensor materials, in which the surface electronic states and surface atomic termination of the sensor materials play a key role. Conventional materials suffer from easily destroyable surface states derived from dangling bonds, vacancies, or doping. In contrast, topological quantum materials, a class of materials such as topological insulators and Weyl semimetals, possess unique topologically protected surface states that are robust against surface modifications, shape imperfections, and defects. Therefore, topological insulators and Weyl semimetals constitute ideal platforms to interface biochemical molecules for sensing applications. This project will explore nanostructures of topological insulators and Weyl semimetals as sensitive and low-noise platforms to interact with molecules and to produce unprecedented Raman enhancement signals for molecule sensing. This project cuts across traditional boundaries of two scientific disciplines, topological quantum physics and molecule sensing, and will open a new avenue of biochemical sensing technologies by fostering the invention of new methods and materials. The research of this project will broadly impact multiple disciplines including physical chemistry, quantum materials, biomolecular engineering, and optics. The research outcome will also constitute excellent educational materials for undergraduate and graduate students, and K-12 students, especially under-represented minorities and females. The educational and outreach activities will prepare the new generations of workforce to handle multidisciplinary tasks involving quantum science, new materials, optics, and biochemical engineering.This project will pioneer the usage of topological quantum materials in chemistry and biomedicine, develop new platforms and methods based on nanostructured topological insulators and Weyl semimetals to enable high-performance surface enhanced Raman spectroscopy sensing. The central hypothesis is that nanostructured topological insulators and Weyl semimetals can generate ultra-strong and ultra-stable surface plasmons and efficient interface coupling with molecules due to their topologically protected surface electronic states, unique to conventional materials. Nanostructured topological insulators and Weyl semimetals have highly conductive and free electron-like surface states, thus possess strong and low-loss surface plasmons. The surface electronic states are topologically protected and immune to surface defects and shape imperfection; thus Raman enhancement will be ultra-stable and low-noise. In addition, the topological surface states induce effective electronic transfer with molecules, further boosting Raman signals through chemical enhancement mechanisms. This project will develop the Raman enhancement platforms based on topological insulators and Weyl semimetals utilizing both plasmonic enhancement and chemical enhancement. Multimodal and tunable Raman sensing platforms will also be developed by integrating the electrochemical reactions and magnetic tuning of topological materials, respectively, in the Raman enhancement device. As part of the project, the educational programs proposed in this project will lead to new classroom and laboratory instructional modes, stimulate student creativity, and foster research-like classes. Graduate and undergraduate students will receive research training by participating in this project. K-12 students will participate in the outreach activities and lab tours which will be developed from the outcome of this research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
各种生化传感技术都是由生物化学分子与传感材料之间的界面耦合所控制的,其中传感材料的表面电子态和表面原子终止起着关键作用。传统材料的表面状态很容易被破坏,这些表面状态来自于悬挂键、空位或掺杂。相比之下,拓扑量子材料,一类材料,如拓扑绝缘体和Weyl半金属,具有独特的拓扑保护的表面状态,对表面改性,形状缺陷和缺陷具有鲁棒性。因此,拓扑绝缘体和Weyl半金属构成了用于传感应用的生物化学分子界面的理想平台。该项目将探索拓扑绝缘体和Weyl半金属的纳米结构作为敏感和低噪声平台与分子相互作用,并产生前所未有的分子传感拉曼增强信号。该项目跨越了拓扑量子物理学和分子传感两个科学学科的传统界限,通过促进新方法和新材料的发明,将开辟一条新的生化传感技术途径。该项目的研究将广泛影响多个学科,包括物理化学,量子材料,生物分子工程和光学。研究成果还将成为本科生和研究生以及K-12学生,特别是代表性不足的少数民族和女性的优秀教材。该项目旨在培养新一代的工作人员,使他们能够处理涉及量子科学、新材料、光学和生物化学工程等多学科的任务。该项目将开创拓扑量子材料在化学和生物医学中的应用,开发基于纳米结构拓扑绝缘体和Weyl半金属的新平台和方法,以实现高性能的表面增强拉曼光谱传感。中心假设是,纳米结构拓扑绝缘体和Weyl半金属可以产生超强和超稳定的表面等离子体和有效的界面耦合与分子由于其拓扑保护的表面电子状态,独特的传统材料。纳米拓扑绝缘体和Weyl半金属具有高导电性和自由的类电子表面态,因此具有强而低损耗的表面等离子体。表面电子态受到拓扑保护,不受表面缺陷和形状缺陷的影响,因此拉曼增强将是超稳定和低噪声的。此外,拓扑表面状态诱导与分子的有效电子转移,通过化学增强机制进一步增强拉曼信号。本计画将发展以拓扑绝缘体与外尔半金属为基础,利用电浆增强与化学增强之拉曼增强平台。通过在拉曼增强装置中分别集成拓扑材料的电化学反应和磁调谐,还将开发多模态和可调谐的拉曼传感平台。作为该项目的一部分,本项目提出的教育方案将导致新的课堂和实验室教学模式,激发学生的创造力,并培养研究型课堂。研究生和本科生将通过参与该项目接受研究培训。K-12学生将参加推广活动和实验室图尔斯,这将是根据这项研究的成果开发的。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shengxi Huang其他文献

p-n Crossed Nanojunctions from Electroless-Etched Si Nanowires
无电蚀刻硅纳米线的 p-n 交叉纳米结
  • DOI:
    10.1021/acs.jpcc.6b07729
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    M. Lu;Shengxi Huang;Yen;Yu;Hsiang;Ming
  • 通讯作者:
    Ming
EllipsoNet: Deep-learning-enabled optical ellipsometry for complex thin films
EllipsoNet:用于复杂薄膜的支持深度学习的光学椭偏仪
  • DOI:
    10.48550/arxiv.2210.05630
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziyang Wang;Yuxuan Cosmi Lin;Kunyan Zhang;Wenjing Wu;Shengxi Huang
  • 通讯作者:
    Shengxi Huang
Designing artificial two-dimensional landscapes via atomic-layer substitution
通过原子层替换设计人造二维景观
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunfan Guo;Yuxuan Lin;Kaichen Xie;Biao Yuan;Jiadi Zhu;Pin-Chun Shen;Ang-Yu Lu;Cong Su;Enzheng Shi;Kunyan Zhang;Changan HuangFu;Haowei Xu;Zhengyang Cai;Ji-Hoon Park;Qingqing Ji;Jiangtao Wang;Xiaochuan Dai;Xuezeng Tian;Shengxi Huang;Letian Dou;Liying Jiao;J
  • 通讯作者:
    J
Progress and prospects of quantum emission from perovskites
钙钛矿量子发射研究进展与展望
  • DOI:
    10.1557/s43579-024-00597-6
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Arka Chatterjee;Sadie Brasel;Autumn Bruncz;Wenjing Wu;Shengxi Huang
  • 通讯作者:
    Shengxi Huang
Light-matter interactions of two-dimensional materials and the coupled nanostructures
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengxi Huang
  • 通讯作者:
    Shengxi Huang

Shengxi Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shengxi Huang', 18)}}的其他基金

CAREER: Multiplexed and Selective Molecular Sensing Based on Raman Enhancement Through 2D Materials
职业:基于 2D 材料拉曼增强的多重和选择性分子传感
  • 批准号:
    2246564
  • 财政年份:
    2022
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
CAREER: Multiplexed and Selective Molecular Sensing Based on Raman Enhancement Through 2D Materials
职业:基于 2D 材料拉曼增强的多重和选择性分子传感
  • 批准号:
    1943895
  • 财政年份:
    2020
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant

相似海外基金

Development of coherent Raman spectroscopy based on cavity-enhanced phase-matched nonlinear optics
基于腔增强相位匹配非线性光学的相干拉曼光谱研究进展
  • 批准号:
    23H01987
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tip enhanced Terahertz - Raman for investigating graphene-water interactions at the nanoscale
尖端增强太赫兹 - 拉曼用于研究纳米级石墨烯-水相互作用
  • 批准号:
    22KF0394
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Using surface-enhanced Raman spectroscopy to improve the delivery of radiotherapy in 3D tumour models
使用表面增强拉曼光谱改善 3D 肿瘤模型中的放射治疗效果
  • 批准号:
    2898373
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Studentship
Methylated DNA sequencing by single nucleotide measurement using surface-enhanced Raman spectroscopy
使用表面增强拉曼光谱通过单核苷酸测量进行甲基化 DNA 测序
  • 批准号:
    23H01823
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Developing High Throughput Approaches to Surface Enhanced Raman Spectroscopy Substrate Screening & Production
开发表面增强拉曼光谱基材筛选的高通量方法
  • 批准号:
    2868831
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Studentship
Equipment: MRI: Track 1 Acquisition of a Tip-Enhanced Raman Spectroscope for Research and Education at San Jose State University
设备: MRI:Track 1 采购尖端增强拉曼光谱仪,用于圣何塞州立大学的研究和教育
  • 批准号:
    2320841
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
Computational Methods for Ensemble Averaged Surface-Enhanced Raman Scattering
系综平均表面增强拉曼散射的计算方法
  • 批准号:
    2312222
  • 财政年份:
    2023
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Continuing Grant
Time-resolved fluorescence and surface-enhanced Raman scattering spectroscopy microscope
时间分辨荧光和表面增强拉曼散射光谱显微镜
  • 批准号:
    515366497
  • 财政年份:
    2022
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Major Research Instrumentation
Intensity Fluctuations in Single Molecule Surface-Enhanced Raman Scattering
单分子表面增强拉曼散射中的强度波动
  • 批准号:
    RGPIN-2020-04236
  • 财政年份:
    2022
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Discovery Grants Program - Individual
MRI: Acquisition of a Scanning Near-Field Optical Microscope (neaSNOM) with Combined Nano-Infrared/Tip-Enhanced Raman Spectroscopy for Research & Education
MRI:购买扫描近场光学显微镜 (neaSNOM) 并结合纳米红外/尖端增强拉曼光谱进行研究
  • 批准号:
    2216239
  • 财政年份:
    2022
  • 资助金额:
    $ 33.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了