CAREER: Multiplexed and Selective Molecular Sensing Based on Raman Enhancement Through 2D Materials

职业:基于 2D 材料拉曼增强的多重和选择性分子传感

基本信息

  • 批准号:
    1943895
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2022-10-31
  • 项目状态:
    已结题

项目摘要

Nontechnical Description: The sensing of biochemical molecules has growing importance in various fields including Internet of Things (IoT), big data- and machine learning-enabled health monitoring, disease diagnosis, environmental monitoring, and food safety. An ideal molecular sensing platform should be highly sensitive, selective, label-free, generating reproducible signal, and able to detect multiple analytes simultaneously (multiplexity). Nowadays, advanced sensors can achieve high sensitivity and stability using electronic, optical or electrochemical mechanisms. With the assistance of receptors (meaning prior knowledge of the analytes is required), high selectivity of analytes can also be realized. However, high multiplexity within short measurement time and without prior knowledge is still beyond maturity. In this context, Raman spectroscopy, which probes the molecular vibrational modes through the measurement of light scattering, stands out as a promising method to achieve all the above requirements, in particular multiplexity and label-free, due to the multiple, extremely narrow and fingerprinting peaks in Raman spectra. While the main drawback of Raman spectroscopy is the weak signal, surface-enhanced Raman spectroscopy has been developed to mediate this issue with even single-molecule sensitivity using structured metal substrates, yet it has suffered from signal non-uniformity and noise. An alternative, Raman enhancement through two-dimensional materials (RE2D), replaces metallic substrates with 2D materials, a type of material only one atom or a few atoms thick. RE2D has exhibited significantly improved signal uniformity and low noise with the added advantage of tunability. This project will explore the fundamental science and techniques to further enhance the sensitivity and multiplexity of RE2D technology, by fabricating various types of 2D material substrates, combining 2D materials with metallic substrates, and applying electrical voltage to tune the enhancement. The research outcome will also be used as educational tools for research-like undergraduate and graduate courses. In addition, the PI will initiate a mentoring program for female graduate students, which will broadly benefit Penn State female students in their research, study, work-life balance and career development. Technical Description: This project aims to generate new fundamental understanding of the novel phenomenon of Raman enhancement through two-dimensional materials (RE2D), i.e. the enhancement of Raman signals of organic analyte molecules when placed on 2D material surfaces. This new knowledge will pave the way for an entirely new family of sensors that combine a number of desired features: high multiplexity, molecular selectivity, unprecedented signal reliability, and tunability. By further integrating plasmonic structures with 2D materials, high sensitivity will be achieved. The project is organized around two main thrusts: (1) analysis of the effects of 2D material-analyte molecule pairing on RE2D, as well as the tunability of molecular selection in RE2D; and (2) determination of the combined effects of chemical and electromagnetic mechanisms on Raman enhancement in a 2D-plasmonic integrated substrate. The fundamental science revealed and the prototype devices demonstrated will effectively guide the design and fabrication of sensitive and multiplexed RE2D sensors. The research outcomes will be integrated into the education and outreach activities: creating research-like courses and Research Experience for Undergraduate programs on Raman-based nanosensors and 2D material optoelectronics, which cultivate students’ abilities of critical thinking and motivate them to find solutions to societal problems using advanced technologies. The PI will also initiate a women graduate student mentoring program, and pair female Penn State alumnae mentors with female graduate students to support their long-term success.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:生化分子传感在物联网(IoT)、大数据和机器学习支持的健康监测、疾病诊断、环境监测和食品安全等领域具有越来越重要的作用。理想的分子传感平台应该是高灵敏度、高选择性、无标记、产生可重复性的信号,并且能够同时检测多个分析物(多重性)。如今,先进的传感器可以通过电子、光学或电化学机制实现高灵敏度和高稳定性。在受体的帮助下(这意味着需要分析物的先验知识),分析物的高选择性也可以实现。然而,在测量时间短且没有先验知识的情况下,高的多解性仍然是不成熟的。在这种背景下,拉曼光谱是一种通过测量光散射来探测分子振动模式的方法,由于拉曼光谱中存在多个极窄的指纹峰,因此它是实现上述要求的一种很有前途的方法,特别是多解性和无标记。虽然拉曼光谱的主要缺点是信号微弱,但表面增强拉曼光谱已经发展到利用结构金属衬底的单分子灵敏度来中介这一问题,但它受到信号不均匀和噪声的影响。另一种方法是通过二维材料的拉曼增强(RE2D),用2D材料取代金属衬底,2D材料是一种只有一个原子或几个原子厚的材料。RE2D表现出显著改善的信号均匀性和低噪声,并增加了可调谐的优势。该项目将通过制备各种类型的2D材料衬底,将2D材料与金属衬底相结合,并通过施加电压来调节增强,来探索进一步提高RE2D技术的灵敏度和多样性的基础科学和技术。研究成果还将被用作本科生和研究生等研究型课程的教育工具。此外,PI将启动一项针对女研究生的指导计划,这将使宾夕法尼亚州立大学的女学生在研究、学习、工作与生活平衡和职业发展方面广泛受益。技术描述:该项目旨在通过二维材料(RE2D)对拉曼增强这一新现象产生新的基本理解,即将有机分析物分子放置在2D材料表面时增强拉曼信号。这一新知识将为一种全新的传感器家族铺平道路,这些传感器结合了许多所需的特征:高度多解性、分子选择性、前所未有的信号可靠性和可调性。通过进一步将等离子体结构与二维材料相结合,将获得高灵敏度。该项目围绕两个主要方面展开:(1)分析2D材料-分析物分子配对对RE2D的影响,以及RE2D中分子选择的可调性;以及(2)确定2D等离子体集成衬底中化学和电磁机制对拉曼增强的综合影响。揭示的基础科学和展示的原型器件将有效地指导灵敏和多路复用的RE2D传感器的设计和制造。研究成果将被整合到教育和推广活动中:为基于拉曼的纳米传感器和2D材料光电子学的本科课程创建类似研究的课程和研究经验,培养学生的批判性思维能力,并激励他们利用先进技术找到社会问题的解决方案。PI还将启动一项女性研究生导师计划,并将宾夕法尼亚州立大学的女校友导师与女性研究生配对,以支持她们的长期成功。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probing interlayer interaction via chiral phonons in layered honeycomb materials
  • DOI:
    10.1103/physrevb.103.035405
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Chen Chen-Chen;Xiaolong Chen;Bingchen Deng;Kenji Watanabe;T. Taniguchi;Shengxi Huang;F. Xia
  • 通讯作者:
    Chen Chen-Chen;Xiaolong Chen;Bingchen Deng;Kenji Watanabe;T. Taniguchi;Shengxi Huang;F. Xia
Anisotropic Fano resonance in the Weyl semimetal candidate LaAlSi
  • DOI:
    10.1103/physrevb.102.235162
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Kunyan Zhang;Tong Wang;Xiaoqi Pang;Fei Han;S. Shang;N. T. Hung;Zi-kui Liu;Mingda Li;R. Saito;Shengxi Huang
  • 通讯作者:
    Kunyan Zhang;Tong Wang;Xiaoqi Pang;Fei Han;S. Shang;N. T. Hung;Zi-kui Liu;Mingda Li;R. Saito;Shengxi Huang
Probing charge transfer in 2D MoS2/tellurene type-II p–n heterojunctions
  • DOI:
    10.1557/s43579-021-00117-w
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Basant Chitara;Kunyan Zhang;Martha Y. Garcia Cervantes;T. B. Limbu;Bikram Adhikari-;Shengxi Huang;Fei Yan-Fe
  • 通讯作者:
    Basant Chitara;Kunyan Zhang;Martha Y. Garcia Cervantes;T. B. Limbu;Bikram Adhikari-;Shengxi Huang;Fei Yan-Fe
Coherent Lattice Wobbling and Out-of-Phase Intensity Oscillations of Friedel Pairs Observed by Ultrafast Electron Diffraction
  • DOI:
    10.1021/acsnano.0c02643
  • 发表时间:
    2020-07-28
  • 期刊:
  • 影响因子:
    17.1
  • 作者:
    Qian, Qingkai;Shen, Xiaozhe;Huang, Shengxi
  • 通讯作者:
    Huang, Shengxi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shengxi Huang其他文献

p-n Crossed Nanojunctions from Electroless-Etched Si Nanowires
无电蚀刻硅纳米线的 p-n 交叉纳米结
  • DOI:
    10.1021/acs.jpcc.6b07729
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    M. Lu;Shengxi Huang;Yen;Yu;Hsiang;Ming
  • 通讯作者:
    Ming
EllipsoNet: Deep-learning-enabled optical ellipsometry for complex thin films
EllipsoNet:用于复杂薄膜的支持深度学习的光学椭偏仪
  • DOI:
    10.48550/arxiv.2210.05630
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziyang Wang;Yuxuan Cosmi Lin;Kunyan Zhang;Wenjing Wu;Shengxi Huang
  • 通讯作者:
    Shengxi Huang
Designing artificial two-dimensional landscapes via atomic-layer substitution
通过原子层替换设计人造二维景观
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yunfan Guo;Yuxuan Lin;Kaichen Xie;Biao Yuan;Jiadi Zhu;Pin-Chun Shen;Ang-Yu Lu;Cong Su;Enzheng Shi;Kunyan Zhang;Changan HuangFu;Haowei Xu;Zhengyang Cai;Ji-Hoon Park;Qingqing Ji;Jiangtao Wang;Xiaochuan Dai;Xuezeng Tian;Shengxi Huang;Letian Dou;Liying Jiao;J
  • 通讯作者:
    J
Progress and prospects of quantum emission from perovskites
钙钛矿量子发射研究进展与展望
  • DOI:
    10.1557/s43579-024-00597-6
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Arka Chatterjee;Sadie Brasel;Autumn Bruncz;Wenjing Wu;Shengxi Huang
  • 通讯作者:
    Shengxi Huang
Light-matter interactions of two-dimensional materials and the coupled nanostructures
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengxi Huang
  • 通讯作者:
    Shengxi Huang

Shengxi Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shengxi Huang', 18)}}的其他基金

Topologically Enhanced Raman Spectroscopy
拓扑增强拉曼光谱
  • 批准号:
    2230400
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Multiplexed and Selective Molecular Sensing Based on Raman Enhancement Through 2D Materials
职业:基于 2D 材料拉曼增强的多重和选择性分子传感
  • 批准号:
    2246564
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant

相似海外基金

I-Corps: Multiplexed Brillouin Microscopy
I-Corps:多重布里渊显微镜
  • 批准号:
    2401371
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Massive Expansion of the Palette of Fluorescent Protein-based Sensors for Multiplexed Imaging of Signaling and Metabolism
用于信号和代谢多重成像的荧光蛋白传感器系列的大规模扩展
  • 批准号:
    24H00489
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Bioinspired Multiplexed Ultrasensitive Biosensing
仿生多重超灵敏生物传感
  • 批准号:
    EP/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
RAPID: Multiplexed Distributed Acoustic Sensing (DAS) at the Ocean Observatory Initiative (OOI) Regional Cabled Array (RCA)
RAPID:海洋观测计划 (OOI) 区域电缆阵列 (RCA) 的多路复用分布式声学传感 (DAS)
  • 批准号:
    2415521
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SBIR Phase I: Subtractive-waveguide based Display for Augmented Reality Smart Glasses using Spatial-temporal Multiplexed Single-CMOS Panels
SBIR 第一阶段:使用时空复用单 CMOS 面板的基于减法波导的增强现实智能眼镜显示器
  • 批准号:
    2335927
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
PFI-TT: A Rapid Multiplexed Diagnostic Tool for Serology of Tick-Borne Diseases
PFI-TT:蜱传疾病血清学快速多重诊断工具
  • 批准号:
    2345816
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CRISPR Microfluidic Array for Simultaneous Multiplexed Sensing of Proteins and miRNAs
用于同时多重检测蛋白质和 miRNA 的 CRISPR 微流体阵列
  • 批准号:
    2231490
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Nanopore sensors for multiplexed, ultra-fast gene detection
用于多重、超快速基因检测的纳米孔传感器
  • 批准号:
    LP220200182
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Linkage Projects
AMBROSIA: A Multiplexed Plasmo-Photonic Biosensing Platform For Rapid And Intelligent Sepsis Diagnosis At The Point- Of-Care
AMBROSIA:用于护理点快速智能脓毒症诊断的多重等离子体光子生物传感平台
  • 批准号:
    10066297
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
An Optical Toolbox for Multiplexed Imaging in Immune Cells
用于免疫细胞多重成像的光学工具箱
  • 批准号:
    2893205
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了