Workshop on Geometry and Analysis of Fluid Flows
流体流动几何与分析研讨会
基本信息
- 批准号:2230558
- 负责人:
- 金额:$ 4.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports participation in the "Workshop on the Geometry and Analysis of Fluid Flows" hosted at Stony Brook University during the week of January 16-20, 2023. The fundamental equations of fluid mechanics describe many natural phenomena, including the motion of air in weather modeling, the lift of an airplane, mixing of fluids with applications in industry, flow of liquids through pipes, generation of electricity through wind and water, and the flow of blood through the body. The full equations are too difficult to solve explicitly or even by computer, hence mathematical attention focuses on properties of the equations. Such properties include whether solutions for given initial conditions exist for a long time or break down in finite time; whether solutions are stable and can be predicted with small errors, or fundamentally unstable and unpredictable; and the validity of simplifying approximations used to make the equations more manageable. These questions are difficult and longstanding. For instance, the question of long-time existence for the idealized three-dimensional fluid equations has remained open for well over a century. Both analysis and geometry have been used to study such questions, and the primary goal of this conference is to bring together senior and junior researchers with expertise in these two areas to share perspectives, techniques, and results, and to train the new generation of mathematicians.The workshop will feature a mathematically diverse group of speakers whose expertise spans multiple relevant areas. Topics to be discussed at the workshop include free boundary problems in fluid dynamics, the geometry of infinite-dimensional groups, singular limits in fluid flows, well-posedness and regularity of fluid equations, and differential geometric methods in mathematics and physics. Some of the talks will focus on issues of global existence for the three-dimensional Euler and Navier-Stokes equations; the limiting behavior as viscosity, compressibility, or surface tension approaches zero; the infinite-dimensional geometry describing fluid flows as geodesics; and well-posedness results for free boundary problems. The organizers are currently writing a textbook on geometric and analytic methods in fluid mechanics; a draft of this book will be distributed during the workshop for the benefit of participants.https://my.vanderbilt.edu/geoanalysisffThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持参加“流体流动的几何和分析研讨会”在斯托尼布鲁克大学主办的一周期间,2023年1月16日至20日。流体力学的基本方程描述了许多自然现象,包括天气建模中的空气运动、飞机的升力、工业应用中的流体混合、液体通过管道的流动、通过风和水发电,以及血液在体内的流动。完整的方程很难显式求解,甚至无法用计算机求解,因此数学上的注意力集中在方程的性质上。这些性质包括给定初始条件下的解是否存在很长时间或在有限时间内崩溃;解是否稳定,可以用小误差预测,或根本不稳定和不可预测;以及简化近似的有效性,用于使方程更易于管理。这些问题既棘手又长期存在。例如,理想化的三维流体方程的长期存在性问题已经存在了世纪。分析和几何都被用来研究这些问题,本次会议的主要目标是将这两个领域的资深和初级研究人员聚集在一起,分享观点,技术和结果,并培养新一代的数学家。研讨会将有一个数学多元化的演讲者小组,他们的专业知识跨越多个相关领域。研讨会将讨论的主题包括流体动力学中的自由边界问题、无限维群的几何、流体流动中的奇异极限、流体方程的适定性和正则性以及数学和物理中的微分几何方法。一些会谈将集中在三维欧拉和Navier-Stokes方程的全球存在的问题;作为粘性,可压缩性或表面张力接近零的限制行为;描述流体流动的测地线的无限维几何;和自由边界问题的适定性结果。组织者目前正在编写一本关于流体力学中几何和分析方法的教科书;这本书的草稿将在讲习班期间分发,以使participants.https://my.vanderbilt.edu/geoanalysisffThis奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcelo Disconzi其他文献
Recent developments in mathematical aspects of relativistic fluids
- DOI:
10.1007/s41114-024-00052-x - 发表时间:
2024-10-25 - 期刊:
- 影响因子:62.500
- 作者:
Marcelo Disconzi - 通讯作者:
Marcelo Disconzi
Marcelo Disconzi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcelo Disconzi', 18)}}的其他基金
Mathematical Questions in Relativistic Fluids
相对论流体中的数学问题
- 批准号:
2107701 - 财政年份:2021
- 资助金额:
$ 4.64万 - 项目类别:
Standard Grant
Mathematical Questions in Classical and Relativistic Fluids and Applications
经典和相对论流体中的数学问题及其应用
- 批准号:
1812826 - 财政年份:2018
- 资助金额:
$ 4.64万 - 项目类别:
Standard Grant
Shanks Workshop on Geometric Analysis
Shanks 几何分析研讨会
- 批准号:
1610645 - 财政年份:2016
- 资助金额:
$ 4.64万 - 项目类别:
Standard Grant
Shanks Workshop on Mathematical Aspects of Fluid Dynamics
Shanks 流体动力学数学方面研讨会
- 批准号:
1464767 - 财政年份:2014
- 资助金额:
$ 4.64万 - 项目类别:
Standard Grant
Analytic Problems in the Physics of Fluids, Gravitation and Conformal Geometry
流体物理、引力和共形几何中的解析问题
- 批准号:
1305705 - 财政年份:2013
- 资助金额:
$ 4.64万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
- 批准号:
2350508 - 财政年份:2024
- 资助金额:
$ 4.64万 - 项目类别:
Standard Grant
CAREER: Guided Exploration of Multiphysics Design Space for Electric Machines Using Tensorial Analysis (GEOMETRY)
职业:使用张量分析(几何)引导探索电机的多物理场设计空间
- 批准号:
2338541 - 财政年份:2024
- 资助金额:
$ 4.64万 - 项目类别:
Continuing Grant
Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
- 批准号:
2350530 - 财政年份:2024
- 资助金额:
$ 4.64万 - 项目类别:
Standard Grant
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
- 批准号:
2236493 - 财政年份:2023
- 资助金额:
$ 4.64万 - 项目类别:
Continuing Grant
Quasiconformal analysis, optimal triangulations and fractal geometry
拟共形分析、最优三角剖分和分形几何
- 批准号:
2303987 - 财政年份:2023
- 资助金额:
$ 4.64万 - 项目类别:
Standard Grant
Conference: Complex Analysis and Geometry
会议:复杂分析与几何
- 批准号:
2246362 - 财政年份:2023
- 资助金额:
$ 4.64万 - 项目类别:
Standard Grant
Microlocal Analysis in Integral Geometry
整体几何中的微局部分析
- 批准号:
23K03186 - 财政年份:2023
- 资助金额:
$ 4.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Problems in the Geometry of Numbers and Diophantine Analysis
数几何问题和丢番图分析
- 批准号:
2327098 - 财政年份:2023
- 资助金额:
$ 4.64万 - 项目类别:
Standard Grant














{{item.name}}会员




