Mathematical Questions in Relativistic Fluids

相对论流体中的数学问题

基本信息

  • 批准号:
    2107701
  • 负责人:
  • 金额:
    $ 18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-15 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

The general theory of relativity is currently the best description of gravitational phenomena and their interactions with matter. Proposed by Einstein in 1915, it has been overwhelmingly confirmed by experiments and is today an essential part of the toolbox employed by physicists studying astrophysics and cosmology. Mathematically, the theory is rich, and the topic of mathematical general relativity is now an exciting and active field of research among mathematicians. This project deals with mathematical properties of relativistic fluids, and in particular with the mathematical structure of theories describing the motion of fluids under conditions in which the laws of relativity cannot be neglected. Examples include accretion disks near black holes, the dynamics of the quark-gluon plasma that forms in collisions of heavy-ions in particle accelerators, and the study of fine properties of star evolution. The mathematical advances and techniques brought about by this project will be important for applications, particularly for the study of viscous effects on mergers of neutron stars. In terms of broader impact, the research has a strong interdisciplinary component and will continue a fruitful interaction between mathematics and physics. This project will also contribute to the education of young scientists, continuing the PI's efforts to disseminate some of the most recent findings in relativistic fluid dynamics to graduate students and post-docs.Specifically, this project will investigate: (a) local well-posedness of the Einstein-Euler system with a physical vacuum boundary; (b) shock formation for the relativistic Euler equations; (c) causality and local well-posedness of theories of relativistic viscous fluids; and (d) formulations of the equations of relativistic viscous fluids coupled to the Einstein equations that are suitable for the numerical simulations of neutron star mergers. A unifying feature of all the partial differential equations (PDEs) studied in this project is that they form a system with multiple characteristic speeds. Understanding systems of this type in more than one spatial dimension is currently one of the main challenges in hyperbolic PDEs. All problems will be studied under realistic physical assumptions. This involves, in particular, considering relativistic fluids in three spatial dimensions, with vorticity, and without symmetry assumptions. Not only is such treatment essential for applications, but it also involves a great deal of rich mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
广义相对论是目前对引力现象及其与物质相互作用的最佳描述。它由爱因斯坦在1915年提出,已被实验压倒性地证实,今天是研究天体物理学和宇宙学的物理学家所使用的工具箱的重要组成部分。在数学上,广义相对论的理论是丰富的,数学广义相对论的主题现在是数学家们兴奋和活跃的研究领域。这个项目涉及相对论流体的数学性质,特别是描述在相对论定律不可忽略的条件下流体运动的理论的数学结构。例子包括黑洞附近的吸积盘,粒子加速器中重离子碰撞形成的夸克-胶子等离子体的动力学,以及恒星演化的精细性质的研究。该项目带来的数学进步和技术将对应用,特别是对中子星合并的粘性效应的研究具有重要意义。就更广泛的影响而言,这项研究具有很强的跨学科成分,并将继续在数学和物理之间进行卓有成效的互动。这个项目还将有助于对年轻科学家的教育,继续PI向研究生和博士后传播相对论流体力学的一些最新成果的努力。具体地说,这个项目将调查:(A)具有物理真空边界的爱因斯坦-欧拉系统的局部适定性;(B)相对论欧拉方程的激波形成;(C)相对论粘性流体理论的因果关系和局部适定性;以及(D)适用于中子星合并的数值模拟的爱因斯坦方程耦合的相对论粘性流体方程的公式。本课题所研究的偏微分方程组有一个共同的特点,那就是它们形成了一个具有多个特征速度的系统。在一个以上的空间维度上理解这类系统是目前双曲偏微分方程组的主要挑战之一。所有问题都将在现实的物理假设下进行研究。这尤其涉及到考虑三个空间维度的相对论流体,有涡度,没有对称性假设。这样的待遇不仅对申请至关重要,而且还涉及大量丰富的数学知识。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Challenges in solving chiral hydrodynamics
  • DOI:
    10.1103/physrevd.107.054029
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    5
  • 作者:
    E. Speranza;F. S. Bemfica;M. Disconzi;J. Noronha
  • 通讯作者:
    E. Speranza;F. S. Bemfica;M. Disconzi;J. Noronha
Subluminality of relativistic quantum tunneling
相对论量子隧道效应的亚光度
  • DOI:
    10.1103/physreva.107.032209
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Gavassino, L.;Disconzi, M. M.
  • 通讯作者:
    Disconzi, M. M.
Cosmological consequences of first-order general-relativistic viscous fluid dynamics
一阶广义相对论粘性流体动力学的宇宙学后果
  • DOI:
    10.1103/physrevd.107.023512
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Bemfica, Fábio S.;Disconzi, Marcelo M.;Noronha, Jorge;Scherrer, Robert J.
  • 通讯作者:
    Scherrer, Robert J.
Rough sound waves in 3D compressible Euler flow with vorticity
  • DOI:
    10.1007/s00029-021-00733-3
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Disconzi;Chenyun Luo;G. Mazzone;Jared Speck
  • 通讯作者:
    M. Disconzi;Chenyun Luo;G. Mazzone;Jared Speck
First-Order General-Relativistic Viscous Fluid Dynamics
  • DOI:
    10.1103/physrevx.12.021044
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    12.5
  • 作者:
    F. S. Bemfica;M. Disconzi;J. Noronha
  • 通讯作者:
    F. S. Bemfica;M. Disconzi;J. Noronha
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcelo Disconzi其他文献

Recent developments in mathematical aspects of relativistic fluids
  • DOI:
    10.1007/s41114-024-00052-x
  • 发表时间:
    2024-10-25
  • 期刊:
  • 影响因子:
    62.500
  • 作者:
    Marcelo Disconzi
  • 通讯作者:
    Marcelo Disconzi

Marcelo Disconzi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcelo Disconzi', 18)}}的其他基金

Workshop on Geometry and Analysis of Fluid Flows
流体流动几何与分析研讨会
  • 批准号:
    2230558
  • 财政年份:
    2022
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Mathematical Questions in Classical and Relativistic Fluids and Applications
经典和相对论流体中的数学问题及其应用
  • 批准号:
    1812826
  • 财政年份:
    2018
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Shanks Workshop on Geometric Analysis
Shanks 几何分析研讨会
  • 批准号:
    1610645
  • 财政年份:
    2016
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Shanks Workshop on Mathematical Aspects of Fluid Dynamics
Shanks 流体动力学数学方面研讨会
  • 批准号:
    1464767
  • 财政年份:
    2014
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Analytic Problems in the Physics of Fluids, Gravitation and Conformal Geometry
流体物理、引力和共形几何中的解析问题
  • 批准号:
    1305705
  • 财政年份:
    2013
  • 资助金额:
    $ 18万
  • 项目类别:
    Continuing Grant

相似海外基金

Asking and Exploring Big Questions in Astronomy
提出和探索天文学中的大问题
  • 批准号:
    ST/Y005848/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18万
  • 项目类别:
    Research Grant
Mitigating the health risks from periodontal disease: refining and focusing the research questions
减轻牙周病的健康风险:完善和集中研究问题
  • 批准号:
    480806
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Miscellaneous Programs
The changing Level 3 qualifications market Rationale and Research questions
不断变化的 3 级资格市场基本原理和研究问题
  • 批准号:
    2883720
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
IMR: MM-1C: An Extensible Platform for Asking Research Questions of High-Speed Network Links
IMR:MM-1C:用于提出高速网络链路研究问题的可扩展平台
  • 批准号:
    2319080
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Some Algorithmic Questions Related to the Mordell Conjecture
与莫德尔猜想相关的一些算法问题
  • 批准号:
    2313466
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
  • 批准号:
    2226553
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
  • 批准号:
    2226601
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Standard Grant
A national approach to prioritizing emerging research questions in COVID-19 in transplantation
优先考虑移植中 COVID-19 新兴研究问题的国家方法
  • 批准号:
    480813
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Miscellaneous Programs
Strategic Engagement of Patients in Sepsis preclinical Studies (SEPSIS): A Priority-Setting Exercise to Identify Patient Important Questions
患者战略性参与脓毒症临床前研究 (SEPSIS):确定患者重要问题的优先顺序设置练习
  • 批准号:
    487935
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Miscellaneous Programs
Questions of National Identity in Palestinian Hip-Hop 2010 to 2021
2010 年至 2021 年巴勒斯坦嘻哈音乐中的民族认同问题
  • 批准号:
    2879630
  • 财政年份:
    2023
  • 资助金额:
    $ 18万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了