Collaborative Research: EAGER: RI: Causal Decision-Making

协作研究:EAGER:RI:因果决策

基本信息

  • 批准号:
    2231796
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Artificial intelligence (AI) plays an increasingly prominent role in society since decisions that were once made by humans are now being delegated to automated systems. These systems are expected to be efficient, robust, explainable, generalizable, and lead to outcomes agreed upon by society. There is a growing understanding that robust decision-making relies on some knowledge of the causal mechanisms underlying the environment. For instance, an intelligent robot has to know the cause and effect relationships in its environment to plan its course of action more robustly; a physician needs to understand the effects of available drugs to design an effective strategy for her patients. The current generation of AI systems responsible for decision-making does not explicitly represent the underlying causal model. This project will build the foundations toward a general framework — i.e., a set of principles, algorithms, and tools — for decision-making systems by enriching the traditional AI formalism with causal ingredients for more efficient, robust, and explainable decision-making. The research will plant the seed for a transformation in the decision-making field and have consequences for developing the next generation of AI systems. The research results are expected to have significant impacts on AI foundations and may potentially have broad implications for society as more and more decisions are being delegated to AI systems. The researchers will develop new educational materials and course curricula in causal inference. The researchers will provide research training for graduate students and are committed to continuing to recruit from underrepresented groups. The research team will continue supporting the “Causality in Statistics Education Award” to improve the teaching and learning of modern causal inference tools in statistics and the data sciences.This project is the first step toward the integration of causal inference (CI) and reinforcement learning (RL) into the discipline of causal reinforcement learning (CRL). The idea is to endow an RL agent with an explicit causal model of the environment and new capabilities for interventional and counterfactual reasoning. CRL will open a new family of learning opportunities and challenges that were neither acknowledged nor understood before. The tasks included in this research include integrating offline and online methods when the agents have different perceptual and actuation capabilities and developing general machinery for counterfactual decision-making, which is more powerful than its standard, interventional counterpart.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)在社会中发挥着越来越重要的作用,因为曾经由人类做出的决定现在正被委托给自动化系统。预计这些系统将是有效的、强大的、可解释的、可推广的,并导致社会商定的结果。越来越多的人认识到,强有力的决策有赖于对环境背后的因果机制的一些了解。例如,智能机器人必须知道环境中的因果关系,才能更有力地规划其行动过程;医生需要了解可用药物的效果,才能为患者设计有效的策略。当前一代负责决策的人工智能系统并不明确地代表潜在的因果模型。该项目将通过用因果成分丰富传统的人工智能形式主义,为决策系统建立一个通用框架-即一套原则、算法和工具-的基础,以实现更有效、更稳健和更可解释的决策制定。这项研究将为决策领域的变革埋下种子,并对开发下一代人工智能系统产生影响。随着越来越多的决策被委托给人工智能系统,预计研究结果将对人工智能基金会产生重大影响,并可能对社会产生广泛影响。研究人员将开发新的因果推理教材和课程。研究人员将为研究生提供研究培训,并致力于继续从代表性不足的群体中招聘。该研究小组将继续支持“统计因果性教育奖”,以改进统计学和数据科学中现代因果推理工具的教与学。该项目是将因果推理(CI)和强化学习(RL)整合到因果强化学习(CRL)学科中的第一步。其想法是赋予RL代理一个明确的环境因果模型,以及干预和反事实推理的新能力。CRL将开启一系列新的学习机会和挑战,这些机会和挑战以前既不被承认也不被理解。这项研究中包括的任务包括当代理人具有不同的感知和驱动能力时,整合离线和在线方法,并开发用于反事实决策的通用机制,这比其标准的干预同行更强大。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elias Bareinboim其他文献

Guest editorial: special issue on causal discovery

Elias Bareinboim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elias Bareinboim', 18)}}的其他基金

CISE: Large: Causal Foundations for Decision Making and Learning
CISE:大型:决策和学习的因果基础
  • 批准号:
    2321786
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
III: Towards Causal Fair Decision-making
III:走向因果公平决策
  • 批准号:
    2040971
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Approximate Causal Inference
职业:近似因果推理
  • 批准号:
    2011497
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research: Causal Inference: Identification, Learning, and Decision-Making
RI:媒介:协作研究:因果推理:识别、学习和决策
  • 批准号:
    2011463
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CAREER: Approximate Causal Inference
职业:近似因果推理
  • 批准号:
    1750807
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
RI: Medium: Collaborative Research: Causal Inference: Identification, Learning, and Decision-Making
RI:媒介:协作研究:因果推理:识别、学习和决策
  • 批准号:
    1704908
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了