Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
基本信息
- 批准号:2232054
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The American Court system is a large and complex socio-technical system that handles millions of criminal cases every year. However, the current pretrial scheduling process is plagued by a staggering one in five defendants missing court dates. This imposes high costs on the judiciary as an institution, and can be particularly harmful to defendants who have insecure employment situations, care-giving responsibilities, or lack transportation to court. These disparate impacts have profound negative effects. To address these issues, this project investigates Fair and Explainable Learning to Schedule, a novel approach that tightly integrates machine learning, constrained optimization, and knowledge representation to learn schedules with certifiable fairness guarantees and enable neuro-symbolic reasoning to provide meaningful and refinable explanations. The proposed research will develop new tools to ensure that pretrial scheduling can decrease nonappearance and be fair to all defendants equally and has thus the potential to have significant societal benefits.From a scientific standpoint, this project will develop a new generation of integrated learning and optimization tools as well as explanation tools to realize the potential of fairer and more equitable schedules. The proposed Fair and Explainable Learning to Schedule will make key contributions in several areas, including: (1) enabling deep learning systems to handle combinatorial structures to represent schedules; (2) developing end-to-end training procedures that integrate constrained optimization within a learning pipeline; (3) providing guarantees on the satisfaction of user-specified fairness notions in the learning process; (4) developing neuro-symbolic approaches to provide explanations about scheduling and fairness properties; (5) integrating learning and logic-based reasoning to provide personalized explanations at appropriate abstraction levels to users; and (6) developing new datasets for fair pretrial court scheduling.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国法院系统是一个庞大而复杂的社会技术系统,每年处理数百万起刑事案件。然而,目前的审前日程安排过程受到令人震惊的五分之一被告缺席开庭日期的困扰。这给司法机构带来了高昂的费用,对那些就业不稳定、负有照顾责任或缺乏前往法院的交通工具的被告尤其有害。这些截然不同的影响产生了深远的负面影响。为了解决这些问题,该项目研究了Fair and Explainable Learning to Schedule,这是一种将机器学习,约束优化和知识表示紧密集成的新方法,可以学习具有可证明公平性保证的时间表,并使神经符号推理能够提供有意义和可改进的解释。该研究将开发新的工具,以确保审前时间安排可以减少不出庭,并公平对待所有被告,从而有可能产生重大的社会效益。从科学的角度来看,该项目将开发新一代的综合学习和优化工具以及解释工具,以实现更公平和更公正的时间表的潜力。Fair and Explainable Learning to Schedule将在几个领域做出重要贡献,包括:(1)使深度学习系统能够处理组合结构来表示时间表;(2)开发端到端的训练程序,将约束优化集成到学习管道中;(3)在学习过程中提供对用户指定的公平性概念的满足保证;(4)在学习过程中提供对用户指定的公平性概念的满足保证。(4)开发神经符号方法以提供关于调度和公平性的解释:(5)集成学习和基于逻辑的推理以在适当的抽象级别上向用户提供个性化的解释;以及(6)该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
End-to-End Optimization and Learning for Multiagent Ensembles
- DOI:10.48550/arxiv.2211.00251
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:James Kotary;Vincenzo Di Vito;Ferdinando Fioretto
- 通讯作者:James Kotary;Vincenzo Di Vito;Ferdinando Fioretto
Differentiable Model Selection for Ensemble Learning
- DOI:10.24963/ijcai.2023/217
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:James Kotary;Vincenzo Di Vito;Ferdinando Fioretto
- 通讯作者:James Kotary;Vincenzo Di Vito;Ferdinando Fioretto
Analyzing and Enhancing the Backward-Pass Convergence of Unrolled Optimization
分析和增强展开优化的后向收敛性
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kotary, James;Christopher, Jacob;Dinh, My H;Fioretto, Ferdinando
- 通讯作者:Fioretto, Ferdinando
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ferdinando Fioretto其他文献
Solving DCOPs with Distributed Large Neighborhood Search
通过分布式大邻域搜索解决 DCOP
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ferdinando Fioretto;A. Dovier;Enrico Pontelli;W. Yeoh;R. Zivan - 通讯作者:
R. Zivan
Constrained-Based Differential Privacy: Releasing Optimal Power Flow Benchmarks Privately - Releasing Optimal Power Flow Benchmarks Privately
基于约束的差分隐私:私下发布最优潮流基准 - 私下发布最优潮流基准
- DOI:
10.1007/978-3-319-93031-2_15 - 发表时间:
2018 - 期刊:
- 影响因子:6.6
- 作者:
Ferdinando Fioretto;Pascal Van Hentenryck - 通讯作者:
Pascal Van Hentenryck
Personalized Privacy Auditing and Optimization at Test Time
测试时的个性化隐私审核和优化
- DOI:
10.48550/arxiv.2302.00077 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Cuong Tran;Ferdinando Fioretto - 通讯作者:
Ferdinando Fioretto
A Large Neighboring Search Schema for Multi-agent Optimization
用于多智能体优化的大型邻近搜索模式
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Khoi D. Hoang;Ferdinando Fioretto;W. Yeoh;Enrico Pontelli;R. Zivan - 通讯作者:
R. Zivan
Proactive Dynamic DCOPs
主动动态 DCOP
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Khoi Hoang;Ferdinando Fioretto;Ping Hou;Makoto Yokoo;William Yeoh;Roie Zivan - 通讯作者:
Roie Zivan
Ferdinando Fioretto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ferdinando Fioretto', 18)}}的其他基金
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:
2345528 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Travel: Doctoral Consortium at the 22nd International Conference on Autonomous Agents and Multiagent Systems
旅行:博士联盟出席第 22 届自主代理和多代理系统国际会议
- 批准号:
2246464 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Privacy and Fairness in Critical Decision Making
协作研究:SaTC:核心:小型:关键决策中的隐私和公平
- 批准号:
2345483 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2334448 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Travel: Doctoral Consortium at the 22nd International Conference on Autonomous Agents and Multiagent Systems
旅行:博士联盟出席第 22 届自主代理和多代理系统国际会议
- 批准号:
2334707 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: End-to-end Constrained Optimization Learning
职业:端到端约束优化学习
- 批准号:
2401285 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2334936 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2242931 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
CAREER: End-to-end Constrained Optimization Learning
职业:端到端约束优化学习
- 批准号:
2143706 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Privacy and Fairness in Critical Decision Making
协作研究:SaTC:核心:小型:关键决策中的隐私和公平
- 批准号:
2133169 - 财政年份:2021
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
醒脑静多靶点调控PI3K/Akt通路抑制CI/RI氧化应激—基于网络药理学及体内、外实验研究
- 批准号:2025JJ90117
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
IgA-FcαRI介导的Syk/NLRP3/caspase-1通路在线状IgA大疱性皮病
中的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
南海北部陆缘IODP钻探区的三维横波速度结构研究
- 批准号:
- 批准年份:2024
- 资助金额:30.0 万元
- 项目类别:省市级项目
跨膜蛋白LRP5胞外域调控膜受体TβRI促钛表面BMSCs归巢、分化的研究
- 批准号:82301120
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Dectin-2通过促进FcεRI聚集和肥大细胞活化加剧哮喘发作的机制研究
- 批准号:82300022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
泥质粉砂型水合物钻探井井壁弹塑性破裂机制研究
- 批准号:42302352
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
藏药甘肃蚤缀β-咔啉生物碱类TβRI抑制剂的发现及其抗肺纤维化作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
海底钻探机器人仿生泳动设计及超声锚固钻采机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
nCs通过TβRI结合并磷酸化Axin促进颌骨成骨反应的作用及机制研究
- 批准号:2022J011347
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
TβRI的UFM化修饰调控TGF-β信号通路和乳腺癌转移的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Small: Motion Fields Understanding for Enhanced Long-Range Imaging
合作研究:RI:小型:增强远程成像的运动场理解
- 批准号:
2232298 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:
2345528 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232055 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant