Collaborative Research: SaTC: CORE: Small: Privacy and Fairness in Critical Decision Making
协作研究:SaTC:核心:小型:关键决策中的隐私和公平
基本信息
- 批准号:2133169
- 负责人:
- 金额:$ 26.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2023-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many agencies or companies release statistics about groups of individuals that are then used as input to critical decision processes. For example, census data is used to allocate funds and distribute critical resources to states and jurisdictions. The resulting decisions can have significant societal and economic impacts for participating individuals. In many cases, the released data contain sensitive information whose privacy is strictly regulated and Differential Privacy (DP) has become the paradigm of choice for protecting data privacy. However, while differential privacy provides strong privacy guarantees on the released data, it has become apparent recently that it may induce biases and fairness issues in downstream decision processes, including the allotment of federal funds, apportionment of congressional seats, and distribution of vaccines and therapeutics. These biases and fairness issues may adversely affect the health, well-being, and sense of belonging of many individuals, and are poorly understood. This project addresses this knowledge gap at the intersection of privacy, fairness, bias, and decision processes. It will offer novel perspectives on differential privacy tools to address fairness and privacy jointly in critical decision processes. It will quantify the disparate impact arising in these applications and contribute novel mechanisms and mitigation techniques to overcome some of these issues. These contributions will be embedded in modeling and software tools to make the technology widely available and applicable.From a scientific standpoint, this project will develop a new generation of privacy-preserving tools that, by exploiting knowledge from differential privacy, optimization, and programming languages, will address biases and fairness issues in their designs, not as an afterthought. The project contributes new scientific knowledge along with five directions: (1) it identifies and understands the structure of downstream decision processes that may be subject to fairness issues when using DP data releases; (2) it identifies and understands the structure of DP mechanisms that may introduce biases; (3) it defines theoretical frameworks to characterize and reason about biases and fairness issues; (4) it designs mitigation measures that would remove or alleviate the biases and fairness issues, finding an appropriate tradeoff between privacy, accuracy, and fairness; (5) it develops modeling and software tools to automatically identify and explain biases and fairness issues, and derive mitigation measures from the specification of the decision process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多机构或公司发布有关个人群体的统计数据,然后将其用作关键决策过程的输入。例如,人口普查数据被用来分配资金,并向各州和各司法管辖区分配关键资源。由此产生的决定可能对参与的个人产生重大的社会和经济影响。在许多情况下,发布的数据包含敏感信息,其隐私受到严格的监管,差异隐私(DP)已成为保护数据隐私的首选范例。然而,尽管差异隐私在发布的数据上提供了强有力的隐私保证,但最近很明显,它可能会在下游决策过程中引发偏见和公平问题,包括联邦资金的分配,国会席位的分配以及疫苗和治疗药物的分配。这些偏见和公平问题可能会对许多人的健康、福祉和归属感产生不利影响,而且人们对此知之甚少。该项目解决了隐私,公平,偏见和决策过程的交叉点的知识差距。它将为差异隐私工具提供新的视角,以在关键决策过程中共同解决公平和隐私问题。它将量化这些应用中产生的不同影响,并提出新的机制和缓解技术来克服其中一些问题。这些贡献将被嵌入到建模和软件工具中,以使该技术广泛可用和适用。从科学的角度来看,该项目将开发新一代隐私保护工具,通过利用差异隐私,优化和编程语言的知识,将解决其设计中的偏见和公平问题,而不是事后的想法。该项目沿着五个方向贡献了新的科学知识:(1)它识别和理解下游决策过程的结构,这些决策过程在使用DP数据发布时可能会受到公平问题的影响;(2)它识别和理解可能引入偏见的DP机制的结构;(3)它定义了理论框架来描述和推理偏见和公平问题;(4)设计缓解措施,消除或减轻偏见和公平问题,在隐私,准确性和公平性之间找到适当的权衡;(5)开发建模和软件工具,以自动识别和解释偏见和公平问题,该奖项反映了NSF的法定使命,并被认为值得支持通过使用基金会的知识价值和更广泛的影响审查标准进行评估。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fairness Increases Adversarial Vulnerability
- DOI:10.48550/arxiv.2211.11835
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Cuong Tran;Keyu Zhu;Ferdinando Fioretto;P. V. Hentenryck
- 通讯作者:Cuong Tran;Keyu Zhu;Ferdinando Fioretto;P. V. Hentenryck
Post-processing of Differentially Private Data: A Fairness Perspective
差分隐私数据的后处理:公平的角度
- DOI:10.24963/ijcai.2022/559
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhu, Keyu;Fioretto, Ferdinando;Van Hentenryck, Pascal
- 通讯作者:Van Hentenryck, Pascal
End-to-End Learning for Fair Ranking Systems
公平排名系统的端到端学习
- DOI:10.1145/3485447.3512247
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kotary, James;Fioretto, Ferdinando;Van Hentenryck, Pascal;Zhu, Ziwei
- 通讯作者:Zhu, Ziwei
FairDP: Certified Fairness with Differential Privacy
- DOI:10.48550/arxiv.2305.16474
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:K. Tran;Ferdinando Fioretto;Issa Khalil;M. Thai;Nhathai Phan
- 通讯作者:K. Tran;Ferdinando Fioretto;Issa Khalil;M. Thai;Nhathai Phan
Differential Privacy and Fairness in Decisions and Learning Tasks: A Survey
- DOI:10.24963/ijcai.2022/766
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Ferdinando Fioretto;Cuong Tran;P. V. Hentenryck;Keyu Zhu
- 通讯作者:Ferdinando Fioretto;Cuong Tran;P. V. Hentenryck;Keyu Zhu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ferdinando Fioretto其他文献
Solving DCOPs with Distributed Large Neighborhood Search
通过分布式大邻域搜索解决 DCOP
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Ferdinando Fioretto;A. Dovier;Enrico Pontelli;W. Yeoh;R. Zivan - 通讯作者:
R. Zivan
Constrained-Based Differential Privacy: Releasing Optimal Power Flow Benchmarks Privately - Releasing Optimal Power Flow Benchmarks Privately
基于约束的差分隐私:私下发布最优潮流基准 - 私下发布最优潮流基准
- DOI:
10.1007/978-3-319-93031-2_15 - 发表时间:
2018 - 期刊:
- 影响因子:6.6
- 作者:
Ferdinando Fioretto;Pascal Van Hentenryck - 通讯作者:
Pascal Van Hentenryck
Personalized Privacy Auditing and Optimization at Test Time
测试时的个性化隐私审核和优化
- DOI:
10.48550/arxiv.2302.00077 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Cuong Tran;Ferdinando Fioretto - 通讯作者:
Ferdinando Fioretto
A Large Neighboring Search Schema for Multi-agent Optimization
用于多智能体优化的大型邻近搜索模式
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Khoi D. Hoang;Ferdinando Fioretto;W. Yeoh;Enrico Pontelli;R. Zivan - 通讯作者:
R. Zivan
Proactive Dynamic DCOPs
主动动态 DCOP
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Khoi Hoang;Ferdinando Fioretto;Ping Hou;Makoto Yokoo;William Yeoh;Roie Zivan - 通讯作者:
Roie Zivan
Ferdinando Fioretto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ferdinando Fioretto', 18)}}的其他基金
Collaborative Research: RI: Small: Deep Constrained Learning for Power Systems
合作研究:RI:小型:电力系统的深度约束学习
- 批准号:
2345528 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2232054 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Travel: Doctoral Consortium at the 22nd International Conference on Autonomous Agents and Multiagent Systems
旅行:博士联盟出席第 22 届自主代理和多代理系统国际会议
- 批准号:
2246464 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Privacy and Fairness in Critical Decision Making
协作研究:SaTC:核心:小型:关键决策中的隐私和公平
- 批准号:
2345483 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2334448 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Travel: Doctoral Consortium at the 22nd International Conference on Autonomous Agents and Multiagent Systems
旅行:博士联盟出席第 22 届自主代理和多代理系统国际会议
- 批准号:
2334707 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
CAREER: End-to-end Constrained Optimization Learning
职业:端到端约束优化学习
- 批准号:
2401285 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Small: End-to-end Learning of Fair and Explainable Schedules for Court Systems
合作研究:RI:小型:法院系统公平且可解释的时间表的端到端学习
- 批准号:
2334936 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Collaborative Research: Physics Informed Real-time Optimal Power Flow
合作研究:基于物理的实时最佳潮流
- 批准号:
2242931 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
CAREER: End-to-end Constrained Optimization Learning
职业:端到端约束优化学习
- 批准号:
2143706 - 财政年份:2022
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
- 批准号:
2230609 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
- 批准号:
2237329 - 财政年份:2023
- 资助金额:
$ 26.5万 - 项目类别:
Standard Grant