CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications
职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架
基本信息
- 批准号:2232120
- 负责人:
- 金额:$ 46.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This CAREER project researches and develops novel algorithms and software to improve the efficacy, usability, performance, and scalability of data reduction for high-performance computing (HPC) systems and applications. It contributes to the cyberinfrastructure (CI) of big data management for HPC applications in many domains such as cosmology, climatology, seismology, and machine learning. The research findings will be widely disseminated through open-source software packages and publications in premier conferences and journals. An integrated educational and outreach program is designed to foster CI workforce development, including integration of concepts and use of data reduction in curricula, research training for undergraduate and graduate students, and a specially designed training program for scientists and engineers from universities and national labs.This CAREER project simultaneously addresses these four critical issues in scientific data reduction through comprehensive analytical modeling and architectural performance optimization. Specific scientific contributions include: (1) it builds lightweight models to accurately estimate the compression ratio and quality of different techniques in the prediction and encoding stages of prediction-based compression, and optimizes the compression configurations to maximize the compression ratio under compression quality constraints; (2) it develops new efficient predictors and lossless encoding methods for lossy compression of scientific data on GPUs with deep architectural optimizations to achieve both high throughput and ratio; and (3) it deeply integrates the optimized compression with parallel I/O and MPI libraries with a series of optimizations to improve the performance of data movements and the scalability of HPC applications. The success of this research agenda enables scientists and engineers to well address the increasingly severe challenge of scientific data explosion.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个CAREER项目研究和开发新的算法和软件,以提高高性能计算(HPC)系统和应用程序的数据减少的效率,可用性,性能和可扩展性。它有助于在宇宙学、气候学、地震学和机器学习等许多领域为HPC应用程序提供大数据管理的网络基础设施(CI)。研究结果将通过开放源码软件包和在主要会议和期刊上发表的出版物广泛传播。一个综合的教育和推广计划旨在促进CI劳动力的发展,包括整合概念和在课程中使用数据简化,为本科生和研究生提供研究培训,以及为来自大学和国家实验室的科学家和工程师专门设计的培训计划。该CAREER项目通过全面的分析建模,架构性能优化。具体的科学贡献包括:(1)建立轻量级模型,准确估计基于预测的压缩的预测和编码阶段不同技术的压缩比和质量,并优化压缩配置,在压缩质量约束下最大化压缩比;(2)开发了新的高效预测器和无损编码方法,用于在GPU上对科学数据进行有损压缩,并进行了深入的架构优化,以实现高吞吐量和高比率;(3)将优化压缩与并行I/O和MPI库深度集成,通过一系列优化,提高了数据移动性能和HPC应用的可扩展性。这一研究议程的成功使科学家和工程师能够很好地应对日益严峻的科学数据爆炸挑战。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
FZ-GPU: A Fast and High-Ratio Lossy Compressor for Scientific Computing Applications on GPUs
- DOI:10.1145/3588195.3592994
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Bo Zhang;Jiannan Tian;S. Di;Xiaodong Yu;Yunhe Feng;Xin Liang;Dingwen Tao;F. Cappello
- 通讯作者:Bo Zhang;Jiannan Tian;S. Di;Xiaodong Yu;Yunhe Feng;Xin Liang;Dingwen Tao;F. Cappello
TDC: Towards Extremely Efficient CNNs on GPUs via Hardware-Aware Tucker Decomposition
- DOI:10.1145/3572848.3577478
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Lizhi Xiang;Miao Yin;Chengming Zhang;Aravind Sukumaran-Rajam;P. Sadayappan;Bo Yuan;Dingwen Tao
- 通讯作者:Lizhi Xiang;Miao Yin;Chengming Zhang;Aravind Sukumaran-Rajam;P. Sadayappan;Bo Yuan;Dingwen Tao
AMRIC: A Novel In Situ Lossy Compression Framework for Efficient I/O in Adaptive Mesh Refinement Applications
AMRIC:一种新颖的原位有损压缩框架,可在自适应网格细化应用中实现高效 I/O
- DOI:10.1145/3581784.3613212
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wang, Daoce;Pulido, Jesus;Grosset, Pascal;Tian, Jiannan;Jin, Sian;Tang, Houjun;Sexton, Jean;Di, Sheng;Zhao, Kai;Fang, Bo
- 通讯作者:Fang, Bo
Software-Hardware Co-design of Heterogeneous SmartNIC System for Recommendation Models Inference and Training
- DOI:10.1145/3577193.3593724
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Anqi Guo;Y. Hao;Chunshu Wu;Pouya Haghi;Zhenyu Pan;Min Si;Dingwen Tao;Ang Li;Martin C. Herbordt;Tong Geng
- 通讯作者:Anqi Guo;Y. Hao;Chunshu Wu;Pouya Haghi;Zhenyu Pan;Min Si;Dingwen Tao;Ang Li;Martin C. Herbordt;Tong Geng
GPULZ: Optimizing LZSS Lossless Compression for Multi-byte Data on Modern GPUs
GPULZ:在现代 GPU 上优化多字节数据的 LZSS 无损压缩
- DOI:10.1145/3577193.3593706
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang, Boyuan;Tian, Jiannan;Di, Sheng;Yu, Xiaodong;Swany, Martin;Tao, Dingwen;Cappello, Franck
- 通讯作者:Cappello, Franck
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dingwen Tao其他文献
FastCLIP: A Suite of Optimization Techniques to Accelerate CLIP Training with Limited Resources
FastCLIP:一套优化技术,可利用有限的资源加速 CLIP 培训
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Xiyuan Wei;Fanjiang Ye;Ori Yonay;Xingyu Chen;Baixi Sun;Dingwen Tao;Tianbao Yang - 通讯作者:
Tianbao Yang
Z-checker: A framework for assessing lossy compression of scientific data
Z-checker:评估科学数据有损压缩的框架
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Dingwen Tao;S. Di;Hanqi Guo;Zizhong Chen;F. Cappello - 通讯作者:
F. Cappello
Extending checksum-based ABFT to tolerate soft errors online in iterative methods
扩展基于校验和的 ABFT 以容忍迭代方法中的在线软错误
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Longxiang Chen;Dingwen Tao;Panruo Wu;Zizhong Chen - 通讯作者:
Zizhong Chen
Performance Optimization for Relative-Error-Bounded Lossy Compression on Scientific Data
科学数据的相对误差有限有损压缩的性能优化
- DOI:
10.1109/tpds.2020.2972548 - 发表时间:
2020-07 - 期刊:
- 影响因子:5.3
- 作者:
Xiangyu Zou;Tao Lu;Wen Xia;Xuan Wang;Weizhe Zhang;Haijun Zhang;Sheng Di;Dingwen Tao;Franck Cappello - 通讯作者:
Franck Cappello
A High-Quality Workflow for Multi-Resolution Scientific Data Reduction and Visualization
用于多分辨率科学数据简化和可视化的高质量工作流程
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Daoce Wang;Pascal Grosset;Jesus Pulido;Tushar M. Athawale;Jiannan Tian;Kai Zhao;Z. Lukic;Axel Huebl;Zhe Wang;James P. Ahrens;Dingwen Tao - 通讯作者:
Dingwen Tao
Dingwen Tao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dingwen Tao', 18)}}的其他基金
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
- 批准号:
2311876 - 财政年份:2023
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design
协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈
- 批准号:
2326495 - 财政年份:2023
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications
职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架
- 批准号:
2312673 - 财政年份:2023
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: HyLoC: Objective-driven Adaptive Hybrid Lossy Compression Framework for Extreme-Scale Scientific Applications
CDS
- 批准号:
2303064 - 财政年份:2022
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
CRII: OAC: An Efficient Lossy Compression Framework for Reducing Memory Footprint for Extreme-Scale Deep Learning on GPU-Based HPC Systems
CRII:OAC:一种有效的有损压缩框架,可减少基于 GPU 的 HPC 系统上超大规模深度学习的内存占用
- 批准号:
2303820 - 财政年份:2022
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CEAPA: A Systematic Approach to Minimize Compression Error Propagation in HPC Applications
合作研究:OAC 核心:CEAPA:一种最小化 HPC 应用中压缩错误传播的系统方法
- 批准号:
2211539 - 财政年份:2022
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: CEAPA: A Systematic Approach to Minimize Compression Error Propagation in HPC Applications
合作研究:OAC 核心:CEAPA:一种最小化 HPC 应用中压缩错误传播的系统方法
- 批准号:
2247060 - 财政年份:2022
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
Collaborative Research: Elements: ROCCI: Integrated Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Hoc Analysis Requirements
合作研究:要素:ROCCI:基于事后分析要求的原位有损压缩优化的集成网络基础设施
- 批准号:
2247080 - 财政年份:2022
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
Collaborative Research: Elements: ROCCI: Integrated Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Hoc Analysis Requirements
合作研究:要素:ROCCI:基于事后分析要求的原位有损压缩优化的集成网络基础设施
- 批准号:
2104024 - 财政年份:2021
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: HyLoC: Objective-driven Adaptive Hybrid Lossy Compression Framework for Extreme-Scale Scientific Applications
CDS
- 批准号:
2042084 - 财政年份:2020
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
相似海外基金
Harnessing Highly Networked HLA-E-Restricted CTL Epitopes to Achieve a Broadly Effective HIV Cure
利用高度网络化的 HLA-E 限制性 CTL 表位实现广泛有效的 HIV 治愈
- 批准号:
10684371 - 财政年份:2023
- 资助金额:
$ 46.78万 - 项目类别:
Increasing and Inspiring Highly Effective Secondary STEM Teachers for High-Need, Culturally Diverse School Districts
为高需求、文化多元化的学区增加和激励高效的中学 STEM 教师
- 批准号:
2243169 - 财政年份:2023
- 资助金额:
$ 46.78万 - 项目类别:
Continuing Grant
Fast effective clustering technologies for highly dynamic massive networks
高动态海量网络快速有效的集群技术
- 批准号:
DP230102908 - 财政年份:2023
- 资助金额:
$ 46.78万 - 项目类别:
Discovery Projects
Highly Mucoadhesive Sustainable Patches for Effective Treatment of Oral Lichen Planus
高度粘膜粘附可持续贴剂可有效治疗口腔扁平苔藓
- 批准号:
EP/X026108/1 - 财政年份:2023
- 资助金额:
$ 46.78万 - 项目类别:
Research Grant
CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications
职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架
- 批准号:
2312673 - 财政年份:2023
- 资助金额:
$ 46.78万 - 项目类别:
Standard Grant
Development of highly stable but cost-effective timing device for integrated circuits
开发高稳定且高性价比的集成电路计时器件
- 批准号:
570497-2021 - 财政年份:2022
- 资助金额:
$ 46.78万 - 项目类别:
Alliance Grants
Bioengineering of highly effective AAV vectors for noninvasive gene delivery to the nervous system
高效 AAV 载体的生物工程,用于将基因非侵入性传递至神经系统
- 批准号:
10597682 - 财政年份:2022
- 资助金额:
$ 46.78万 - 项目类别:
Development of Highly Effective Catalysts for Carbon Dioxide Conversion to Value-added Compounds at Low Temperatures
开发二氧化碳低温转化为增值化合物的高效催化剂
- 批准号:
22H01870 - 财政年份:2022
- 资助金额:
$ 46.78万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bioengineering of highly effective AAV vectors for noninvasive gene delivery to the nervous system
高效 AAV 载体的生物工程,用于将基因非侵入性传递至神经系统
- 批准号:
10453167 - 财政年份:2022
- 资助金额:
$ 46.78万 - 项目类别:
Developing intranasal dsRNA molecules as broadly effective therapeutics against highly pathogenic coronaviruses
开发鼻内 dsRNA 分子作为针对高致病性冠状病毒的广泛有效疗法
- 批准号:
473344 - 财政年份:2022
- 资助金额:
$ 46.78万 - 项目类别:
Operating Grants