Collaborative Research: SHF: Small: Reimagining Communication Bottlenecks in GNN Acceleration through Collaborative Locality Enhancement and Compression Co-Design

协作研究:SHF:小型:通过协作局部性增强和压缩协同设计重新想象 GNN 加速中的通信瓶颈

基本信息

  • 批准号:
    2326495
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

The digital revolution has generated a vast volume of interconnected data, often represented as graphs, which is pertinent to numerous critical real-world applications. This has led to the increasing prevalence of Graph Neural Networks (GNNs), a technique that extends the benefits of Artificial Intelligence (AI) to graph-based applications. GNNs hold promising potential to significantly impact society, from accelerating drug discovery and preventing supply chain disruptions, to averting cascading power grid failures and identifying misinformation on social media. However, the actualization of such potential is currently impeded by computational inefficiencies caused by the colossal size and intricate nature (such as extreme sparsity and irregularity) of graphs, which pose challenges to the practical deployment of GNNs. This project aims to bridge the gap between the computational efficiency required for GNNs and their current performance, primarily due to the uniquely heavy load of communication required in GNN computation. In addition, the project enriches the educational experience of undergraduate and graduate students in the US by enhancing the quality of AI and system-related courses and outreach activities at the University of Rochester and Indiana University. Successful completion of this research project can unlock the immense potential of GNNs to solve problems in fields of medicine, public infrastructure, and economic development, among many other issues critical to the well-functioning of the republic and the prosperity of its economy. This project aims to develop a revolutionary communication reduction method that organically integrates on-the-fly versatile graph locality enhancement and high-ratio compression through software-hardware co-design. The research is structured around three primary thrusts: (1) The development of an on-the-fly graph locality enhancer via hardware-software co-design, providing significant versatility and additional reductions in communication demands compared to current leading methods. (2) The creation of an efficient lossy compressor that enables high-ratio, error-bounded compression and decompression for graph data, including both graph embedding and topology information. (3) The investigation into methods for effectively combining the graph locality enhancer and graph compressor, allowing them to mutually benefit each other. These strategies together directly address the persistent communication bottlenecks in GNNs and unleash their potential for societal benefits. Moreover, this project aims to resolve the following query: whether a collaborative integration of locality enhancement and data compression, the two most prevalent communication optimization approaches, can provide a ground-breaking solution to general graph problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数字革命产生了大量相互关联的数据,通常以图表的形式表示,这与许多关键的现实世界应用程序相关。这导致了图神经网络(gnn)的日益普及,这种技术将人工智能(AI)的好处扩展到基于图的应用程序。gnn有望对社会产生重大影响,从加速药物发现和防止供应链中断,到避免级联电网故障和识别社交媒体上的错误信息。然而,这种潜力的实现目前受到图的巨大尺寸和复杂性质(如极端稀疏性和不规则性)导致的计算效率低下的阻碍,这给gnn的实际部署带来了挑战。该项目旨在弥合GNN计算所需的计算效率与其当前性能之间的差距,这主要是由于GNN计算所需的通信负载非常大。此外,该项目通过提高罗切斯特大学和印第安纳大学的人工智能和系统相关课程和外展活动的质量,丰富了美国本科生和研究生的教育经验。这项研究项目的成功完成可以释放gnn的巨大潜力,以解决医学、公共基础设施和经济发展领域的问题,以及对共和国的良好运作和经济繁荣至关重要的许多其他问题。该项目旨在开发一种革命性的通信减少方法,通过软硬件协同设计有机地集成了动态通用图局部性增强和高比率压缩。该研究围绕三个主要重点进行:(1)通过硬件软件协同设计开发动态图局部性增强器,与当前领先的方法相比,提供了显著的多功能性和额外的通信需求减少。(2)创建一个高效的有损压缩器,可以对图数据进行高比率、无错误限制的压缩和解压缩,包括图嵌入和拓扑信息。(3)研究图局部性增强器和图压缩器有效结合的方法,使两者相互受益。这些战略共同直接解决了gnn中持续存在的通信瓶颈,并释放了其潜在的社会效益。此外,本项目旨在解决以下问题:局域增强和数据压缩这两种最流行的通信优化方法的协作集成是否可以为一般图问题提供突破性的解决方案。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dingwen Tao其他文献

FastCLIP: A Suite of Optimization Techniques to Accelerate CLIP Training with Limited Resources
FastCLIP:一套优化技术,可利用有限的资源加速 CLIP 培训
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiyuan Wei;Fanjiang Ye;Ori Yonay;Xingyu Chen;Baixi Sun;Dingwen Tao;Tianbao Yang
  • 通讯作者:
    Tianbao Yang
Z-checker: A framework for assessing lossy compression of scientific data
Z-checker:评估科学数据有损压缩的框架
Extending checksum-based ABFT to tolerate soft errors online in iterative methods
扩展基于校验和的 ABFT 以容忍迭代方法中的在线软错误
Performance Optimization for Relative-Error-Bounded Lossy Compression on Scientific Data
科学数据的相对误差有限有损压缩的性能优化
  • DOI:
    10.1109/tpds.2020.2972548
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Xiangyu Zou;Tao Lu;Wen Xia;Xuan Wang;Weizhe Zhang;Haijun Zhang;Sheng Di;Dingwen Tao;Franck Cappello
  • 通讯作者:
    Franck Cappello
A High-Quality Workflow for Multi-Resolution Scientific Data Reduction and Visualization
用于多分辨率科学数据简化和可视化的高质量工作流程
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daoce Wang;Pascal Grosset;Jesus Pulido;Tushar M. Athawale;Jiannan Tian;Kai Zhao;Z. Lukic;Axel Huebl;Zhe Wang;James P. Ahrens;Dingwen Tao
  • 通讯作者:
    Dingwen Tao

Dingwen Tao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dingwen Tao', 18)}}的其他基金

CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications
职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架
  • 批准号:
    2232120
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311876
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: A Highly Effective, Usable, Performant, Scalable Data Reduction Framework for HPC Systems and Applications
职业:适用于 HPC 系统和应用程序的高效、可用、高性能、可扩展的数据缩减框架
  • 批准号:
    2312673
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: HyLoC: Objective-driven Adaptive Hybrid Lossy Compression Framework for Extreme-Scale Scientific Applications
CDS
  • 批准号:
    2303064
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CRII: OAC: An Efficient Lossy Compression Framework for Reducing Memory Footprint for Extreme-Scale Deep Learning on GPU-Based HPC Systems
CRII:OAC:一种有效的有损压缩框架,可减少基于 GPU 的 HPC 系统上超大规模深度学习的内存占用
  • 批准号:
    2303820
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CEAPA: A Systematic Approach to Minimize Compression Error Propagation in HPC Applications
合作研究:OAC 核心:CEAPA:一种最小化 HPC 应用中压缩错误传播的系统方法
  • 批准号:
    2211539
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: CEAPA: A Systematic Approach to Minimize Compression Error Propagation in HPC Applications
合作研究:OAC 核心:CEAPA:一种最小化 HPC 应用中压缩错误传播的系统方法
  • 批准号:
    2247060
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ROCCI: Integrated Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Hoc Analysis Requirements
合作研究:要素:ROCCI:基于事后分析要求的原位有损压缩优化的集成网络基础设施
  • 批准号:
    2247080
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ROCCI: Integrated Cyberinfrastructure for In Situ Lossy Compression Optimization Based on Post Hoc Analysis Requirements
合作研究:要素:ROCCI:基于事后分析要求的原位有损压缩优化的集成网络基础设施
  • 批准号:
    2104024
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CDS&E: Collaborative Research: HyLoC: Objective-driven Adaptive Hybrid Lossy Compression Framework for Extreme-Scale Scientific Applications
CDS
  • 批准号:
    2042084
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了