EAGER: CRYO: Engineering Charge and Energy Transfer in Superconducting Tunnel Junctions to Achieve Solid-State Refrigeration to Sub-Kelvin Temperatures

EAGER:CRYO:超导隧道结中的工程电荷和能量转移以实现亚开尔文温度的固态制冷

基本信息

项目摘要

Accessing sub-Kelvin temperatures is critical for exploring interesting quantum phenomena as well as for the development of novel quantum computing and quantum optics-based technologies. Currently available approaches to refrigeration to sub-1 K temperatures are expensive, complicated to build and maintain as well as bulky, and therefore are restricted largely to specialized research labs. Establishing solid-state refrigeration below 1K will be truly transformative, because it will impact a broad range of emerging, high-impact technologies that all hinge on the availability of compact, efficient and low-cost technologies for ultra-low temperature cryogenic cooling. Successful demonstration of high cooling rates and temperatures as low as 100 mK will have a dramatic impact on quantum technologies, such as quantum computing. Further, the sub-Kelvin solid-state low temperature refrigeration can also dramatically improve and simplify the use of ultrasensitive detectors for a number of applications ranging from astrophysics to detection of hazardous materials. This project will establish a novel approach to solid state refrigeration to address these challenges. In this EArly-concept Grant for Exploratory Research (EAGER) project the team seeks to develop superconducting tunnel junction-based solid-state refrigeration that will enable cooling from 1 K to 100 mK without a dilution refrigerator. Superconducting tunnel junction-based refrigeration is, in principle, very similar to cooling via a thermionic device as it relies on the selective transmission of high energy carriers from one electrode to a second superconducting electrode featuring a small bandgap. Such selective transmission of high energy carriers results in cooling of the semiconductor/normal metal and heating in the superconductor. A key challenge to achieve superconducting tunnel junction-based refrigeration is the thermal coupling between the hot and cold sides, via phonons, which prevents realization of high cooling powers and the required low temperatures. The intellectual merit of this work is in establishing completely novel approaches to solid-state refrigeration and is organized into thrusts aimed at understanding: 1) How the thermal resistance between the hot and the cold sides of the superconducting tunnel junction can be increased by engineering the phonon density of states via nanostructuring or by introducing molecular moieties at interfaces, 2) How molecular junctions can be engineered to provide excellent electronic transparency, cooling and thermal resistance to achieve record cooling rates, and 3) How superconducting tunnel junctions based on different materials and structures can be cascaded to achieve cooling all the way from 1 K to 100 mK? Successfully addressing these important challenges will enable development of both superconducting tunnel junction based solid-state refrigeration and novel refrigeration devices that can be readily integrated with various quantum technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
亚开尔文温度对于探索有趣的量子现象以及开发新的量子计算和基于量子光学的技术至关重要。目前可用的制冷到低于1 K温度的方法是昂贵的,建造和维护复杂,体积庞大,因此主要限于专门的研究实验室。建立低于1 K的固态制冷将是真正的变革,因为它将影响广泛的新兴高影响力技术,这些技术都取决于超低温低温冷却的紧凑,高效和低成本技术的可用性。高冷却速率和低至100 mK的温度的成功演示将对量子技术(如量子计算)产生巨大影响。此外,亚开尔文固态低温制冷还可以显着改善和简化超灵敏检测器的使用,用于从天体物理学到检测危险材料的许多应用。该项目将建立一种新的固态制冷方法来应对这些挑战。在这个早期概念探索性研究资助(EAGER)项目中,该团队寻求开发基于超导隧道结的固态制冷,该制冷将在没有稀释制冷机的情况下实现从1 K到100 mK的冷却。基于超导隧道结的制冷在原理上与通过超导设备的冷却非常相似,因为它依赖于高能量载流子从一个电极到具有小带隙的第二超导电极的选择性传输。高能载流子的这种选择性传输导致半导体/正常金属的冷却和超导体中的加热。实现基于超导隧道结的制冷的一个关键挑战是热端和冷端之间通过声子的热耦合,这阻碍了高冷却功率和所需低温的实现。这项工作的智力价值在于建立固态制冷的全新方法,并组织成旨在理解的推力:1)如何通过经由纳米结构化设计声子态密度或通过在界面处引入分子部分来增加超导隧道结的热侧和冷侧之间的热阻,2)如何设计分子结以提供优异的电子透明度,冷却和热阻,以实现创纪录的冷却速率,以及3)如何级联基于不同材料和结构的超导隧道结,以实现从1 K到100 mK的冷却?成功解决这些重要挑战将使超导隧道结为基础的固态制冷和新型制冷设备的发展,可以很容易地与各种量子技术集成。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pramod Sangi Reddy其他文献

Heterogeneous Memory System Design
异构内存系统设计
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pramod Sangi Reddy
  • 通讯作者:
    Pramod Sangi Reddy

Pramod Sangi Reddy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pramod Sangi Reddy', 18)}}的其他基金

UNS: Thermal Rectification and Heat Transfer Enhancement via Near-Field Radiation
UNS:通过近场辐射进行热整流和传热增强
  • 批准号:
    1509691
  • 财政年份:
    2015
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant
Picowatt-Resolution Calorimetry for Probing Near-Field Radiative Thermal Transport
用于探测近场辐射热传输的皮瓦分辨率量热法
  • 批准号:
    1235691
  • 财政年份:
    2012
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant
Picowatt Calorimetry for Single Biological Cell Studies
用于单个生物细胞研究的皮瓦量热法
  • 批准号:
    1033542
  • 财政年份:
    2010
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant
CAREER: Heat and Charge Transport in Metal-Molecule-Metal Junctions
职业:金属-分子-金属结中的热和电荷传输
  • 批准号:
    0844902
  • 财政年份:
    2009
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant

相似国自然基金

棉花纤维素合酶CesA的Cryo-EM结构和功能解析
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006232/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Research Grant
Cryo-EM studies of a metazoan replisome captured ex vivo during elongation and termination
在延伸和终止过程中离体捕获的后生动物复制体的冷冻电镜研究
  • 批准号:
    BB/Y006151/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Research Grant
Intelligent cryo-electron microscopy of G protein-coupled receptors
G 蛋白偶联受体的智能冷冻电子显微镜
  • 批准号:
    23K23818
  • 财政年份:
    2024
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Atomistic reconstruction of large biomolecular systems from low-resolution cryo-electron microscopy data - RECKON
利用低分辨率冷冻电子显微镜数据原子重建大型生物分子系统 - RECKON
  • 批准号:
    EP/Y010221/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Fellowship
MFB: Evaluating and Advancing Cryo-EM for RNA Conformational Ensembles
MFB:评估和推进 RNA 构象整体的冷冻电镜
  • 批准号:
    2330652
  • 财政年份:
    2024
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Standard Grant
Cryo-ETで捉える細胞膜局在性ヒトV-ATPase
Cryo-ET 捕获细胞膜定位的人 V-ATP 酶
  • 批准号:
    24KJ0159
  • 财政年份:
    2024
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Deep Learning for 3-D reconstruction of heterogeneous molecular structures from Cryo-EM data
利用冷冻电镜数据进行异质分子结构 3D 重建的深度学习
  • 批准号:
    BB/Y513878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Research Grant
950 MHz NMR spectrometer with cryo probe
带低温探头的 950 MHz NMR 波谱仪
  • 批准号:
    518589454
  • 财政年份:
    2023
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Major Research Instrumentation
Cryo laser-ablation system (157+193nm) with 'triple-quad' plasma mass spectrometer, Cryo-LA-ICPMS/MS
带有“三重四极杆”等离子体质谱仪、Cryo-LA-ICPMS/MS 的冷冻激光烧蚀系统 (157 193nm)
  • 批准号:
    515081333
  • 财政年份:
    2023
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Major Research Instrumentation
Cryo-electron microscopy determination of G protein-coupled receptor states
冷冻电镜测定 G 蛋白偶联受体状态
  • 批准号:
    DE230101681
  • 财政年份:
    2023
  • 资助金额:
    $ 29.89万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了