Conference: On Poisson Geometry
会议:泊松几何
基本信息
- 批准号:2232673
- 负责人:
- 金额:$ 4.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This award provides support for the ninth Poisson Geometry Conference to be held at Amherst College on March 16-23, 2023. This conference series consists of regular meetings in North America of mathematicians interested in Poisson geometry and its applications, attracting leading experts and young researchers alike. The aim of the series is to promote interaction between mathematicians inspired by problems arising in physics, and physicists searching for new mathematical tools. The meetings also serve as a unique forum for junior mathematicians from all over the United States to learn about cutting edge developments in Poisson geometry and to disseminate their own research results in the field.Poisson geometry originated as the mathematical formulation of classical mechanics as the semiclassical limit of quantum mechanics. Its history began with classical work by Poisson, Hamilton, Jacobi, and Lie, developing into a separate field in its own right around 1980 via the work of Lichnerowicz and Weinstein. Today, Poisson geometry influences and is influenced by many adjacent areas of mathematics, including symplectic geometry, generalized complex geometry, Lie algebroids and Lie groupoids, geometric mechanics, cluster algebras, integrable systems, quantization, non-commutative geometry, stratification theory, and the geometry of singular symplectic and Poisson structures. The annual workshops provide an excellent opportunity for members of various groups working on related areas from different perspectives to exchange new ideas and stimulate collaboration. The goal of each workshop is to address important questions and future directions of the subject. More information is found at the conference website: https://www.amherst.edu/academiclife/departments/mathematics-statistics/news/gone-fishing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为将于2023年3月16日至23日在阿默斯特学院举行的第九届泊松几何形状会议提供了支持。该会议系列包括在北美在北美的数学家会议及其对Poisson几何学及其应用感兴趣的会议,吸引了领先的专家和年轻的研究人员。该系列的目的是促进受物理学问题启发的数学家与寻找新数学工具的互动。这些会议还为来自美国各地的初级数学家提供了一个独特的论坛,以了解泊松几何形状的最前沿发展,并在该领域中传播自己的研究结果。Poisson几何形状作为量子力学的半经典限制的经典机制的数学表述。它的历史始于Poisson,Hamilton,Jacobi和Lie的古典作品,并通过Lichnerowicz和Weinstein的作品在1980年左右发展成独立的领域。 Today, Poisson geometry influences and is influenced by many adjacent areas of mathematics, including symplectic geometry, generalized complex geometry, Lie algebroids and Lie groupoids, geometric mechanics, cluster algebras, integrable systems, quantization, non-commutative geometry, stratification theory, and the geometry of singular symplectic and Poisson structures.年度研讨会为从不同角度从事相关领域的各个小组的成员提供了绝佳的机会,以交换新想法并刺激协作。每个研讨会的目的是解决该主题的重要问题和未来方向。更多信息可在会议网站上找到:https://www.amherst.edu/academiclife/departments/mathematics-statistics/news/news/gone-fishing.this奖,反映了NSF的法定任务,并被认为是通过基金会的知识优点和广泛的影响来评估的值得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ivan Contreras Palacios其他文献
Ivan Contreras Palacios的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Landau方程和Vlasov-Poisson-Boltzmann方程组解的适定性和收敛率的研究
- 批准号:12301284
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Wiener-Poisson空间上的微分分析及其应用
- 批准号:12371152
- 批准年份:2023
- 资助金额:44.00 万元
- 项目类别:面上项目
Poisson-Nernst-Planck模型的奇异摄动方法和应用
- 批准号:12301220
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
两类Schrödinger-Poisson系统解的研究
- 批准号:12301144
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于弹性体泊松效应的动静态力传感机理与增敏机制研究
- 批准号:22374032
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Conference: A Meeting on Poisson Geometry
会议:泊松几何会议
- 批准号:
2410632 - 财政年份:2024
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Conference: The Many Interactions between Symplectic and Poisson Geometry
会议:辛几何和泊松几何之间的许多相互作用
- 批准号:
2304750 - 财政年份:2023
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Poisson 2014: Summer School and Conference on Poisson Geometry in Mathematics and Physics, July 28-August 8, 2014
Poisson 2014:数学和物理泊松几何暑期学校和会议,2014年7月28日至8月8日
- 批准号:
1405965 - 财政年份:2014
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
School and conference in Poisson Geometry
泊松几何学校和会议
- 批准号:
1005829 - 财政年份:2010
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant