Poisson Geometry Conference

泊松几何会议

基本信息

  • 批准号:
    1711110
  • 负责人:
  • 金额:
    $ 2.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

This award supports the sixth Poisson Geometry Conference to be held at the University of Notre Dame on May 4-7, 2017. The Poisson Geometry Conference series consists of regular meetings in North America of mathematicians interested in Poisson geometry and its applications, attracting leading experts and young researchers alike. The aim of the series is to promote interaction between mathematicians inspired by problems arising in physics, and physicists searching for new mathematical tools. The meetings also serve as a unique forum for junior mathematicians from all over the United States to learn about cutting edge developments in Poisson geometry and to disseminate their own research results in the field. Poisson geometry originated as the mathematical formulation of classical mechanics as the semiclassical limit of quantum mechanics. Its history began with classical work by Poisson, Hamilton, Jacobi, and Lie, developing into a separate field in its own right around 1980 via the work of Lichnerowicz and Weinstein. Today, Poisson geometry influences and is influenced by many adjacent areas of mathematics, including symplectic geometry, generalized complex geometry, Lie algebroids and Lie groupoids, geometric mechanics, cluster algebras, integrable systems, quantization, non-commutative geometry, stratification theory, and the geometry of singular symplectic and Poisson structures. The "Gone Fishing" workshops provide an excellent opportunity for members of various groups working on related areas from different perspectives to exchange new ideas and stimulate collaboration. The goal of each workshop is to address important questions and future directions of the subject. Conference website: http://www3.nd.edu/~conf/pgc2017/
该奖项支持将于2017年5月4日至7日在圣母大学举行的第六届泊松几何会议。泊松几何会议系列由北美对泊松几何及其应用感兴趣的数学家的定期会议组成,吸引了领先的专家和年轻的研究人员。该系列的目的是促进数学家之间的互动,启发了物理学中出现的问题,物理学家寻找新的数学工具。 会议还作为一个独特的论坛,初级数学家来自美国各地,了解尖端的发展泊松几何和传播自己的研究成果在该领域。泊松几何起源于经典力学的数学表述,作为量子力学的半经典极限。它的历史始于泊松、汉密尔顿、雅可比和李的经典著作,1980年左右,通过利希内罗维奇和温斯坦的著作,发展成为一个独立的领域。今天,泊松几何的影响,并受到许多相邻领域的数学,包括辛几何,广义复几何,李代数和李群胚,几何力学,集群代数,可积系统,量化,非交换几何,分层理论,几何奇异辛和泊松结构。“钓鱼”研讨会为从不同角度从事相关领域工作的各个小组的成员提供了一个交流新想法和促进合作的绝佳机会。 每个讲习班的目标是解决该主题的重要问题和未来方向。会议网址:http://www3.nd.edu/~conf/pgc2017/

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Gekhtman其他文献

Associahedra as moment polytopes
作为矩多面体的联面体
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Gekhtman;Hugh Thomas
  • 通讯作者:
    Hugh Thomas
Remarkable growth in matter radii of Ca isotopes across neutron magic number N = 28 via interaction cross section σI measurements
通过相互作用截面 σI 测量,跨中子幻数 N = 28 的 Ca 同位素物质半径显着增长
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Gekhtman;Tomoki Nakanishi;Dylan Rupel;M.Tanaka
  • 通讯作者:
    M.Tanaka

Michael Gekhtman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Gekhtman', 18)}}的其他基金

Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100785
  • 财政年份:
    2021
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Cluster Structures of Geometric Type
合作研究:几何类型的广义簇结构
  • 批准号:
    1702054
  • 财政年份:
    2017
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
Quivers and Bipartite Graphs: Physics and Mathematics
箭袋和二分图:物理和数学
  • 批准号:
    1636087
  • 财政年份:
    2016
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: CLUSTER STRUCTURES ON POISSON-LIE GROUPS AND COMPLETE INTEGRABILITY
合作研究:泊松李群的簇结构和完全可积性
  • 批准号:
    1362801
  • 财政年份:
    2014
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: Cluster Algebras Approach to Poisson-Lie Groups and Higher Genus Directed Networks
协作研究:泊松李群和更高属有向网络的簇代数方法
  • 批准号:
    1101462
  • 财政年份:
    2011
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Program on Quantization
量化计划
  • 批准号:
    1114152
  • 财政年份:
    2011
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Collaborative Research: Cluster Algebras, Canonical Bases and Nets on Surfaces of Higher Genus
合作研究:簇代数、规范基和更高属面上的网络
  • 批准号:
    0801204
  • 财政年份:
    2008
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: Hurwitz Numbers, Teichmuller Spaces, Schubert Calculus, and Cluster Algebras
合作研究:Hurwitz 数、Teichmuller 空间、舒伯特微积分和簇代数
  • 批准号:
    0400484
  • 财政年份:
    2004
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Collaborative Workshop in Algebraic Geometry
会议:代数几何合作研讨会
  • 批准号:
    2333970
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Conference: Latin American School of Algebraic Geometry
会议:拉丁美洲代数几何学院
  • 批准号:
    2401164
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Conference: Amplituhedra, Cluster Algebras and Positive Geometry
会议:幅面体、簇代数和正几何
  • 批准号:
    2412346
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Conference: Noncommutative Geometry and Analysis
会议:非交换几何与分析
  • 批准号:
    2350508
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Conference: Representation Theory and Related Geometry
会议:表示论及相关几何
  • 批准号:
    2401049
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Conference: The 2024 Graduate Student Topology and Geometry Conference
会议:2024年研究生拓扑与几何会议
  • 批准号:
    2348932
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Conference: Symmetry and Geometry in South Florida
会议:南佛罗里达州的对称与几何
  • 批准号:
    2350239
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Conference: Dynamical Systems and Fractal Geometry
会议:动力系统和分形几何
  • 批准号:
    2402022
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Conference: Asymptotics in Complex Geometry: A Conference in Memory of Steve Zelditch
会议:复杂几何中的渐进:纪念史蒂夫·泽尔迪奇的会议
  • 批准号:
    2348566
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Standard Grant
Conference: Texas Algebraic Geometry Symposium (TAGS) 2024-2026
会议:德克萨斯代数几何研讨会 (TAGS) 2024-2026
  • 批准号:
    2349244
  • 财政年份:
    2024
  • 资助金额:
    $ 2.8万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了