Fast-Track Consensus Study on Foundational Research Gaps and Future Directions for Digital Twins

关于数字孪生基础研究差距和未来方向的快速共识研究

基本信息

  • 批准号:
    2233022
  • 负责人:
  • 金额:
    $ 9.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

The National Academies of Sciences, Engineering, and Medicine is undertaking a study to identify needs and opportunities to advance the mathematical, statistical, and computational foundations of digital twins in applications across science, medicine, engineering, and society. A digital twin is a computer model that changes over time to represent the structure or behavior of a unique physical entity, such as a manufacturing process, piece of equipment, or even a person. Based on data inputs, the digital twin can be used to gain insight into present and future states of the physical twin. The exploration and use of digital twins is growing across domains, but many state-of-the-art digital twins are largely the result of custom implementations that require considerable deployment resources and a high level of expertise. Due to the individualized nature of many digital twin implementations, the relative maturity of digital twins varies significantly across problem spaces. Moving from one-off digital twins to digital twin implementations at scale will involve addressing foundational mathematical, statistical, and computational gaps. This study aims to highlight these critical research gaps and provide options to address them with the goal of advancing the use of digital twins across disciplinary communities.The proposed study by the National Academies of Sciences, Engineering, and Medicine, will highlight needs and opportunities to advance the mathematical, statistical, and computational foundations of digital twins in applications across science, medicine, engineering, and society. A digital twin assimilates observational data and uses this information to continually update its internal models so that they reflect the evolving physical system. The digital twin is therefore continuously improving and provides a dynamic digital history of the physical entity. These core functionalities can be augmented with feedback control and artificial intelligence, combined with ensembles of similar twins, or used in tandem with other predictive tools to analyze and diagnose operational states and to optimize performance under real-world conditions. Utilization of digital twins varies across disciplines. This study will address the following: (1) diverging definitions of digital twins and domain-inspired use cases; (2) foundational mathematical, statistical, and computational gaps for the continued development of digital twins; (3) best practices for digital twin development and use; and (4) opportunities to move the community and state of practice forward. Three domain-specific workshops will be held to explore the methods, practices, use cases, and challenges for the development and use of digital twins—focus areas include biomedical domains, Earth and environmental systems, and aerospace engineering. Four reports will be released by the National Academies during the course of this 18-month study: three short summaries of the domain-specific workshops and a consensus report focused on the cross-cutting foundational research gaps and future directions for digital twins.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国国家科学院、工程院和医学院正在进行一项研究,以确定在科学、医学、工程和社会应用中推进数字孪生的数学、统计和计算基础的需求和机会。数字孪生是一种计算机模型,它随着时间的推移而变化,以表示一个独特的物理实体的结构或行为,比如一个制造过程、一件设备,甚至一个人。基于数据输入,数字孪生可以用来洞察物理孪生的当前和未来状态。数字孪生的探索和使用正在跨领域发展,但是许多最先进的数字孪生主要是定制实现的结果,这些实现需要大量的部署资源和高水平的专业知识。由于许多数字孪生实现的个性化性质,数字孪生的相对成熟度在不同的问题空间中差异很大。从一次性数字孪生到大规模数字孪生的实现将涉及解决基础数学、统计和计算方面的差距。本研究旨在突出这些关键的研究差距,并提供解决这些差距的选择,目标是促进跨学科社区使用数字双胞胎。这项由美国国家科学院、工程院和医学院提出的研究将强调在科学、医学、工程和社会的应用中推进数字双胞胎的数学、统计和计算基础的需求和机会。数字孪生体吸收观测数据,并利用这些信息不断更新其内部模型,以反映不断发展的物理系统。因此,数字孪生正在不断改进,并提供物理实体的动态数字历史。这些核心功能可以通过反馈控制和人工智能来增强,也可以与类似的双胞胎组合在一起,或者与其他预测工具一起使用,以分析和诊断操作状态,并在现实条件下优化性能。不同学科对数字孪生的利用各不相同。本研究将解决以下问题:(1)数字孪生和领域启发用例的不同定义;(2)数字孪生持续发展的基础数学、统计和计算差距;(3)数字孪生体开发和使用的最佳实践;(4)推动社区和实践状态向前发展的机会。将举办三个特定领域的研讨会,探讨开发和使用数字孪生的方法、实践、用例和挑战,重点领域包括生物医学领域、地球和环境系统以及航空航天工程。在为期18个月的研究过程中,美国国家科学院将发布四份报告:三份针对特定领域研讨会的简短总结,以及一份针对数字孪生的跨领域基础研究差距和未来方向的共识报告。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michelle Schwalbe其他文献

Michelle Schwalbe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michelle Schwalbe', 18)}}的其他基金

2023 Quadrennial Review of the National Nanotechnology Initiative (NNI)
2023 年国家纳米技术计划 (NNI) 四年一度审查
  • 批准号:
    2329910
  • 财政年份:
    2023
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Research Infrastructure: Support for a Workshop on Artificial Intelligence to Assist Mathematical Reasoning
研究基础设施:支持人工智能辅助数学推理研讨会
  • 批准号:
    2316144
  • 财政年份:
    2023
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
The Current Status and Future Direction of High Magnetic Field Science in the United States
美国强磁场科学的现状和未来方向
  • 批准号:
    2234156
  • 财政年份:
    2022
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Continuing Grant
Core Support of the Board on Mathematical Sciences and Analytics and the Committee on Applied and Theoretical Statistics
数学科学与分析委员会和应用与理论统计委员会的核心支持
  • 批准号:
    2133303
  • 财政年份:
    2022
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Continuing Grant
Designing Materials to Revolutionize and Engineer our Future
设计材料来彻底改变和设计我们的未来
  • 批准号:
    2054501
  • 财政年份:
    2021
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Illustrating the Impact of the Mathematical Sciences
说明数学科学的影响
  • 批准号:
    1933194
  • 财政年份:
    2019
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Partial Support of the Board on Mathematical Sciences and Anayltics and the Committee on Applied and Theoretical Statistics
数学科学和分析委员会以及应用和理论统计委员会的部分支持
  • 批准号:
    1820527
  • 财政年份:
    2018
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Support of the Committee on Applied and Theoretical Statistics
应用和理论统计委员会的支持
  • 批准号:
    1700083
  • 财政年份:
    2017
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Partial Support of the Meetings of the Board on Mathematical Sciences and Analytics
数学科学与分析委员会会议的部分支持
  • 批准号:
    1738066
  • 财政年份:
    2017
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
Core Support for the Board on Mathematical Sciences and Their Applications
数学科学及其应用委员会的核心支持
  • 批准号:
    1643066
  • 财政年份:
    2016
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: GEO OSE Track 2: Developing CI-enabled collaborative workflows to integrate data for the SZ4D (Subduction Zones in Four Dimensions) community
协作研究:GEO OSE 轨道 2:开发支持 CI 的协作工作流程以集成 SZ4D(四维俯冲带)社区的数据
  • 批准号:
    2324714
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
  • 批准号:
    2327025
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Resistively-Detected Electron Spin Resonance in Multilayer Graphene
RII Track-4:NSF:多层石墨烯中电阻检测的电子自旋共振
  • 批准号:
    2327206
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Improving subseasonal-to-seasonal forecasts of Central Pacific extreme hydrometeorological events and their impacts in Hawaii
RII Track-4:NSF:改进中太平洋极端水文气象事件的次季节到季节预报及其对夏威夷的影响
  • 批准号:
    2327232
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Design of zeolite-encapsulated metal phthalocyanines catalysts enabled by insights from synchrotron-based X-ray techniques
RII Track-4:NSF:通过基于同步加速器的 X 射线技术的见解实现沸石封装金属酞菁催化剂的设计
  • 批准号:
    2327267
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: In-Situ/Operando Characterizations of Single Atom Catalysts for Clean Fuel Generation
RII Track-4:NSF:用于清洁燃料生成的单原子催化剂的原位/操作表征
  • 批准号:
    2327349
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Wind-induced noise in the prospective seismic data measured in the Venusian surface environment
RII Track-4:@NASA:金星表面环境中测量的预期地震数据中的风致噪声
  • 批准号:
    2327422
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 9.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了