Understanding and Controlling Magnetic Two-Dimensional Crystals
理解和控制磁性二维晶体
基本信息
- 批准号:2326944
- 负责人:
- 金额:$ 50.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical DescriptionMagnetic materials have found widespread applications in communications, computing, and advanced electronics. Electrons possess have intrinsic magnetism, due to a quantum property called spin. Magnetism in a bulk materials arises from the coupling of these spins to be oriented along the same direction. This research project explores the properties of a new class of ultrathin magnets based on two-dimensional (2D) materials. For such atomically thin materials, the orientations of electron spins are very sensitive to the local environment and external stimulus. This gives rise to new physical phenomena and device functionality not possible from conventional magnets. This project will study the effects of adsorbed molecules, adjacent layers, and mechanical strain on the properties of 2D magnets. The goal is to learn how to control their properties, potentially leading to the creation of on-demand physical properties and devices with ultracompact form factors and novel functionality. High school, undergraduate, and graduate students will be trained with a rich set of expertise in 2D materials fabrication and characterization. This project will therefore help to prepare the future workforce for the quantum information science and technologies in the U.S. The PI will also raise the public literacy of quantum technologies through local educational activities.Technical DescriptionMagnetic 2D materials provide an ideal condensed matter platform for the study of quantum magnetism, and the control of 2D magnets potentially unlocks unprecedented opportunities for new quantum phases of matter and ultrathin magnetoelectric and magneto-optical devices. The breadth of application prospects of 2D magnets hinges on the diversity of magnetic properties but remains hindered by the status quo: only a small number of 2D ferromagnets have been unambiguously discovered, with a limited variety of properties. Through designing experiments to finely modify the structural, electronic, and chemical characteristics of 2D magnets, this project seeks to unravel the complex dependence of 2D magnetism on the basic physical parameters of quantum materials. Based on these fundamental understandings, vital engineering approaches can be developed to create “designer” or “on-demand” magnetic quantum materials properties. The main research approaches include controlling 2D magnets by subjecting them to practical influencing factors such as contacting materials, adsorbed chemicals, and strained lattices and probing the altered properties by a range of microscopies and spectroscopies such as scanning magnetic circular dichroism and the magneto-reflectance spectroscopy. Understanding 2D magnetism in relation to these influencing factors and developing engineering approaches therefrom could prompt unprecedented manipulation of 2D magnets, thereby transforming the magnetic quantum material landscape and enabling disruptive spintronic and quantum technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述磁性材料在通信、计算和先进电子设备中得到了广泛的应用。由于一种称为自旋的量子性质,电子具有本征磁性。块状材料中的磁性来自于这些自旋沿同一方向定向的耦合。本研究项目探索了一种基于二维材料的新型超薄磁体的性能。对于这种原子薄的材料,电子自旋的取向对局域环境和外部刺激非常敏感。这带来了新的物理现象和设备功能,这是传统磁体无法实现的。本项目将研究吸附分子、相邻层和机械应变对2D磁体性能的影响。目标是学习如何控制它们的属性,潜在地导致创建具有超紧凑外形和新颖功能的按需物理属性和设备。高中生、本科生和研究生将接受2D材料制造和表征方面的丰富专业知识培训。因此,该项目将有助于为美国未来的量子信息科学和技术做好准备。该协会还将通过当地的教育活动提高量子技术的公众素养。技术说明磁性2D材料为量子磁学的研究提供了理想的凝聚态平台,而对2D磁体的控制可能为物质和超薄磁电和磁光器件的新量子相打开前所未有的机会。2D磁体应用前景的广度取决于磁性的多样性,但仍然受到现状的阻碍:只有少量的2D铁磁体被明确发现,性能的多样性有限。通过设计实验来精细地改变2D磁体的结构、电子和化学特性,该项目试图揭示2D磁体对量子材料基本物理参数的复杂依赖关系。在这些基本认识的基础上,可以开发出重要的工程方法来创造“设计者”或“按需”磁量子材料的性质。主要的研究方法包括通过使2D磁体受到接触材料、吸附的化学物质和应变晶格等实际影响因素的控制,以及通过扫描磁二色谱和磁反射光谱等一系列显微镜和光谱来探测改变的性能。了解与这些影响因素相关的2D磁性并由此开发工程方法可能会促使对2D磁体进行前所未有的操作,从而改变磁性量子材料的格局,并实现颠覆性的自旋电子和量子技术。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheng Gong其他文献
Tertiary Control of Islanded Microgrids Based on a Linearized ACOPF with Losses Compensation
基于带损耗补偿的线性 ACOPF 孤岛微电网三级控制
- DOI:
10.1109/icpes47639.2019.9105465 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
J. Long;Cheng Gong;Yidan Lu - 通讯作者:
Yidan Lu
Effects of oxyethylene groups on the adsorption behavior and application performance of long alkyl chain phosphate surfactants
氧乙烯基对长烷基链磷酸盐表面活性剂吸附行为及使用性能的影响
- DOI:
10.1016/j.molliq.2021.117044 - 发表时间:
2021 - 期刊:
- 影响因子:6
- 作者:
Cheng Gong;Ting Zhao;Yonghong Zhao;Guangliang Zhang - 通讯作者:
Guangliang Zhang
ignificant Constraints of SnO2, SnS2, and SnS2/SnO2 Heterostructures on Mitigating Polysulfide Shuttle Effects in Lithium-Sulfur Batteries
SnO2、SnS2 和 SnS2/SnO2 异质结构对减轻锂硫电池中多硫化物穿梭效应的重要限制
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:4
- 作者:
Xinqi Zhao;Xiaohong Sun;Ruisong Guo;Song Wang;Fuyun Li;Tingting Li;Shuhui Wang;Cheng Gong - 通讯作者:
Cheng Gong
miRNA-154-5p Inhibits Proliferation, Migration and Invasion by Targeting E2F5 in Prostate Cancer Cell Lines
miRNA-154-5p 通过靶向 E2F5 抑制前列腺癌细胞系中的增殖、迁移和侵袭
- DOI:
10.1159/000445252 - 发表时间:
2016-04 - 期刊:
- 影响因子:1.6
- 作者:
Zheng Yang;Zhu Chen;Ma Long;Shao Pengfei;Qin Chao;Li Pu;Cao Qiang;Ju Xiaobing;Cheng Gong;Zhu Qingyi;Gu Xiaojian;Hua Lixin - 通讯作者:
Hua Lixin
Digital transformation and corporate innovation: A factor input perspective
数字化转型与企业创新:要素投入视角
- DOI:
10.1002/mde.3809 - 发表时间:
2023 - 期刊:
- 影响因子:2.2
- 作者:
Qianru Liu;Jianmei Liu;Cheng Gong - 通讯作者:
Cheng Gong
Cheng Gong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cheng Gong', 18)}}的其他基金
CAREER: Multiferroicity in van der Waals Heterostructures
职业:范德华异质结构的多铁性
- 批准号:
2340773 - 财政年份:2024
- 资助金额:
$ 50.97万 - 项目类别:
Continuing Grant
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
- 批准号:
2233592 - 财政年份:2023
- 资助金额:
$ 50.97万 - 项目类别:
Standard Grant
相似海外基金
Foundation of orbital current and its application for controlling magnetic moment
轨道电流的基础及其在磁矩控制中的应用
- 批准号:
23H00176 - 财政年份:2023
- 资助金额:
$ 50.97万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of element-specific ultrafast magnetic imaging for controlling spins by laser
开发用于通过激光控制自旋的元素特异性超快磁成像
- 批准号:
23H01108 - 财政年份:2023
- 资助金额:
$ 50.97万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Beyond alignment: novel mechanisms for controlling block copolymer phase behavior using magnetic fields
职业:超越排列:利用磁场控制嵌段共聚物相行为的新机制
- 批准号:
2143162 - 财政年份:2022
- 资助金额:
$ 50.97万 - 项目类别:
Continuing Grant
Controlling Magnetic Excitation Pathways via Molecular Design of Anisotropic Dipolar Spin Arrays
通过各向异性偶极自旋阵列的分子设计控制磁激发路径
- 批准号:
2154830 - 财政年份:2022
- 资助金额:
$ 50.97万 - 项目类别:
Standard Grant
Peeling of Nano-Particle (PNP) process for localized material removing on a silicon carbide (SiC) surface by controlling of magnetic field
通过控制磁场来去除碳化硅 (SiC) 表面上的局部材料的纳米粒子 (PNP) 剥离工艺
- 批准号:
21J14569 - 财政年份:2021
- 资助金额:
$ 50.97万 - 项目类别:
Grant-in-Aid for JSPS Fellows
SCREAM: Synthesizing and Controlling Resonant Electric and Magnetic near fields using piezoelectric micro-resonators
SCREAM:使用压电微谐振器合成和控制谐振电和磁近场
- 批准号:
EP/V048856/1 - 财政年份:2021
- 资助金额:
$ 50.97万 - 项目类别:
Research Grant
Controlling Acoustic Metamaterials with Magnetic Resonances: The Best of Both Worlds
用磁共振控制声学超材料:两全其美
- 批准号:
EP/T016574/1 - 财政年份:2020
- 资助金额:
$ 50.97万 - 项目类别:
Research Grant
Probing and controlling topological superconductivity under vector magnetic field and pressure
矢量磁场和压力下拓扑超导的探测和控制
- 批准号:
20F20020 - 财政年份:2020
- 资助金额:
$ 50.97万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Controlling Acoustic Metamaterials with Magnetic Resonances: The Best of Both Worlds
用磁共振控制声学超材料:两全其美
- 批准号:
EP/T018399/1 - 财政年份:2020
- 资助金额:
$ 50.97万 - 项目类别:
Research Grant
Magnetic-electric-optical multi-functionality of nano-granular film by controlling the shape of magnetic nano-particle
通过控制磁性纳米颗粒的形状实现纳米颗粒薄膜的磁电光多功能
- 批准号:
19K21102 - 财政年份:2018
- 资助金额:
$ 50.97万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




