CAREER: Decentralized and Online Planning for Emergent Cooperation in Multi-Robot Teams

职业:多机器人团队紧急合作的去中心化在线规划

基本信息

  • 批准号:
    2235622
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

Mobile robot teams can address needs for in-home service, personal mobility, warehouse management, and agricultural monitoring. These applications require robots to work in complex, dynamic, and cluttered environments. Further, robots need to interact with other robots and humans. Understanding nuances in how robots interact with other robots allows for safer and more robust systems. State-of-the-art research often defines teams of robots as cooperative or non-cooperative, with fixed relationships and interactions within the team. However, this limits the capabilities of the robot team. This Faculty Early Career Development (CAREER) project envisions robot teams that adapt to others with emergent cooperation. Robots may change their cooperation based on their task, surroundings, and the decisions of others. Creating these robot teams requires new insight into how they make decisions. This project explores reputation, reciprocity, and co-existence for a robot team, which enable emergent cooperation. Equipping robots with these skills creates safer and more robust teams of mobile service robots.This project investigates how to integrate underlying cooperation and interaction models into the design of a heterogeneous mobile robot team. Integral to this research are new types of geometric control policies that incorporate uncertainty and future predictions of other robots. Research on (1) reputation, (2) reciprocity, and (3) co-existence work towards the long-term goal of enabling emergent cooperation. Leveraging new geometric tools for environmental decompositions allows for fast and decentralized decision-making among robots, and combining this with game theory and nonlinear control allows the robots to reason about future actions. This project will develop new distributed and decentralized control algorithms with provable properties and demonstrate their performance in simulations and hardware experiments. The first objective focuses on predicting the reputation of other robots. Estimating reputation allows robots to partition an environment based on the predicted ability of others, adjusting to variations without direct communication. The second objective defines reciprocity, which allows robots to predict and negotiate local interactions based on historical interactions and improves the overall efficiency across teams. The third objective explores co-existence, which allows robots to predict conflict with other teams in shared environments and modify policies to reduce conflict while still fulfilling their goals. The performance of these policies will be analyzed through cooperative game theory and Lyapunov stability theory, allowing for provably quantifying the performance gains of robot teams. Ultimately, this enables a team of robots to cooperate with an unknown group of robots within a cluttered environment. Example applications include delivery robots and resource-foraging robots.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
移动机器人团队可以满足上门服务、个人移动性、仓库管理和农业监控的需求。这些应用要求机器人在复杂、动态和杂乱的环境中工作。此外,机器人需要与其他机器人和人类互动。了解机器人与其他机器人交互方式的细微差别可以使系统更安全、更强大。最先进的研究经常将机器人团队定义为合作或非合作,团队内有固定的关系和互动。然而,这限制了机器人团队的能力。这个学院早期职业发展(Career)项目设想机器人团队通过紧急合作来适应其他团队。机器人可能会根据自己的任务、周围环境和其他人的决定来改变他们的合作。创建这些机器人团队需要对他们如何做出决策有新的见解。这个项目探索了机器人团队的声誉、互惠和共存,这使得紧急合作成为可能。为机器人配备这些技能可以创建更安全和更健壮的移动服务机器人团队。本项目研究如何将底层的合作和交互模型整合到一个异类移动机器人团队的设计中。与这项研究相结合的是新类型的几何控制策略,它包含了其他机器人的不确定性和未来预测。对(1)声誉、(2)互惠和(3)共存的研究朝着实现紧急合作的长期目标努力。利用新的几何工具进行环境分解,可以在机器人之间快速和分散地做出决策,并将其与博弈论和非线性控制相结合,使机器人能够对未来的行动进行推理。该项目将开发具有可证明性质的新的分布式和分散式控制算法,并在仿真和硬件实验中展示其性能。第一个目标是预测其他机器人的声誉。估计声誉使机器人能够根据其他人预测的能力来划分环境,在没有直接沟通的情况下适应变化。第二个目标定义了互惠,这允许机器人根据历史交互来预测和协商本地交互,并提高团队的整体效率。第三个目标是探索共存,这使得机器人能够预测与共享环境中其他团队的冲突,并修改策略以减少冲突,同时仍能实现他们的目标。这些策略的性能将通过合作博弈理论和李亚普诺夫稳定性理论进行分析,从而允许可证明地量化机器人团队的性能收益。最终,这使一组机器人能够在混乱的环境中与一组未知的机器人合作。应用实例包括送货机器人和资源搜寻机器人。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Covering Dynamic Demand with Multi-Resource Heterogeneous Teams
用多资源异构团队满足动态需求
  • DOI:
    10.1109/iros55552.2023.10342119
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Coffey, Mela;Pierson, Alyssa
  • 通讯作者:
    Pierson, Alyssa
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alyssa Pierson其他文献

Dynamic Risk Density for Autonomous Navigation in Cluttered Environments without Object Detection
杂乱环境中无需物体检测的自主导航的动态风险密度
Safe Path Planning with Multi-Model Risk Level Sets
具有多模型风险级别集的安全路径规划
Collaborative Teleoperation with Haptic Feedback for Collision-Free Navigation of Ground Robots
具有触觉反馈的协作远程操作,用于地面机器人的无碰撞导航
Intersection Coordination of Mixed Autonomous and Human Vehicles with Heterogeneous Social Preferences
具有异质社会偏好的混合自动驾驶和人类车辆的交叉口协调
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Noam Buckman;Alyssa Pierson;Wilko Schwarting;S. Karaman;D. Rus
  • 通讯作者:
    D. Rus
Weighted Buffered Voronoi Cells for Distributed Semi-Cooperative Behavior
用于分布式半合作行为的加权缓冲 Voronoi 单元

Alyssa Pierson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CIF: Small: Ensuring Accuracy in Differentially Private Decentralized Optimization
CIF:小:确保差分隐私去中心化优化的准确性
  • 批准号:
    2334449
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CRII: CNS: Secure Decentralized AI in Heterogeneous IoT Networks: Foundation and Application
CRII:CNS:异构物联网网络中的安全去中心化人工智能:基础与应用
  • 批准号:
    2245933
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Construction of Personalized and Decentralized Oriented Sightseeing Recommendation and Planning Foundation
个性化、去中心化的旅游推荐与规划基础建设
  • 批准号:
    23H03404
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Trustworthy decentralized AI for large-scale IoT representation learning
用于大规模物联网表征学习的值得信赖的去中心化人工智能
  • 批准号:
    22KJ0878
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
PFI-TT: Decentralized, On-Demand Production of Dialysis Solutions and Similar Medical Fluids
PFI-TT:透析溶液和类似医用液体的分散式按需生产
  • 批准号:
    2234509
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
ODELIA - An Open Consortium for Decentralized Medical Artificial Intelligence
ODELIA - 去中心化医疗人工智能开放联盟
  • 批准号:
    10069847
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    EU-Funded
EAGER: Decentralized Autonomous Organization (DAO)
EAGER:去中心化自治组织(DAO)
  • 批准号:
    2335995
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Development of Low-Power Autonomous Decentralized Scheduling Technology for IoT Environment
物联网环境低功耗自主分散调度技术开发
  • 批准号:
    23K13331
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
User-friendly Analysis Platform for Decentralized Multi-site Diffusion MRI Studies
用于分散式多站点扩散 MRI 研究的用户友好分析平台
  • 批准号:
    10724720
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
CAREER: A Decentralized Optimization Framework for Next-Gen Transportation and Power Systems with Large-scale Transportation Electrification
职业生涯:具有大规模交通电气化的下一代交通和电力系统的去中心化优化框架
  • 批准号:
    2237413
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了