CRII: CNS: Secure Decentralized AI in Heterogeneous IoT Networks: Foundation and Application
CRII:CNS:异构物联网网络中的安全去中心化人工智能:基础与应用
基本信息
- 批准号:2245933
- 负责人:
- 金额:$ 17.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Under the emergence of the Internet of Things (IoT), tremendous amounts of data have been generated in a distributed manner from IoT devices, e.g., smart sensors, smartphones, cameras, etc. To effectively learn the patterns among such distributed data, distributed learning/federated learning frameworks have been explored to effectively utilize the distributed/decentralized data resource. However, the current distributed learning systems over IoT face inevitable challenges, mainly categorized into security, privacy, compatibility, and efficiency. For instance, first, the success of most existing learning systems relies heavily on a central server to coordinate the learning process. Second, traditional distributed learning requires the data on different devices to be in the same type/dimension. Third, the learning efficiency of the existing frameworks is another major concern. This work aims to systematically design a secure and fully decentralized learning method over IoT devices that enables the system to learn patterns from heterogenous data, i.e., data in different types/dimensions. This work will also deploy the developed method on a decentralized platform, i.e., blockchain, and design corresponding system protocols to eliminate the need to use a central server as in traditional distributed learning. On the other hand, the proposed system aims to exploit potential system vulnerabilities, develop attack and defense mechanisms, and theoretically analyze the system's reliability. Moreover, this work lays the groundwork for system research in dense IoT applications supported by decentralized learning. It generates preliminary experimental data necessary to develop an independent and competitive research agenda. This work will extend the traditional distributed/federated learning into a more general and practical scenario under IoT, where various types of data and IoT devices exist in the system. This work will also enhance the reliability of learning performance when a certain portion of the data in the network is attacked/malicious. Additionally, this work is potentially transformative as it may help generate innovative and secure decentralized deep learning techniques for numerous applications, e.g., smart cities, smart homes, and mobile health, since the proposed system can effectively utilize heterogeneous resources. It could also have significant impacts on research in transforming the existing centralized or distributed smart applications into a fully decentralized manner with security and performance guarantees. To address the education and social aspects, this project aims to provide students with resources to pursue advanced degrees and careers in STEM. This work plans to engage students from underrepresented groups as a part of a continuous effort to broaden participation in computing and develop advanced graduate-level courses to introduce new trends and cybersecurity challenges in future decentralized artificial intelligence over IoT.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在物联网(IoT)的出现下,已经以分布式的方式从物联网设备(例如智能传感器,智能手机,相机等)以分布式方式生成了大量数据,以有效地学习分布式数据,分布式学习/联合学习框架之间的模式,以有效地探索了分布式的分布式/宾语数据资源。但是,当前关于物联网的分布式学习系统面临不可避免的挑战,主要归类为安全,隐私,兼容性和效率。例如,首先,大多数现有学习系统的成功在很大程度上依赖中央服务器来协调学习过程。其次,传统的分布式学习要求不同设备上的数据处于相同的类型/维度。第三,现有框架的学习效率是另一个主要问题。这项工作旨在在物联网设备上系统地设计一种安全且完全分散的学习方法,使系统能够从异源数据(即不同类型/维度中的数据)中学习模式。这项工作还将在分散的平台,即区块链和设计相应的系统协议上部署开发的方法,以消除像传统分布式学习一样使用中央服务器的需求。另一方面,提出的系统旨在利用潜在的系统漏洞,开发攻击和防御机制,并理论上分析系统的可靠性。此外,这项工作为分散学习支持的密集物联网应用程序中的系统研究奠定了基础。它产生了制定独立和竞争性研究议程所需的初步实验数据。这项工作将将传统的分布式学习/联合学习扩展到物联网下的更一般和实际的场景中,在该方案中,系统中存在各种类型的数据和物联网设备。当网络中的一定部分受到攻击/恶意,这项工作还将提高学习绩效的可靠性。此外,这项工作具有潜在的变革性,因为它可能有助于为众多应用程序(例如智能城市,智能家居和移动健康)生成创新且安全的分散深度学习技术,因为拟议的系统可以有效地利用异构资源。它还可能对将现有的集中或分布式智能应用程序转换为具有安全性和性能保证的完全分散的方式,对研究产生重大影响。为了解决教育和社会方面,该项目旨在为学生提供资源,以追求STEM的高级学位和职业。这项工作计划使来自代表性不足的小组的学生成为不断努力的一部分,以扩大计算和开发高级研究生级课程,以在未来对IOT的人工智能分散的人工智能中引入新的趋势和网络安全挑战。该奖项颁发了NSF的法定任务,并反映了通过评估的支持者的支持者,该奖项已被评估范围众所周知。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Blockchain-Empowered Federated Learning Through Model and Feature Calibration
- DOI:10.1109/jiot.2023.3311967
- 发表时间:2024-02
- 期刊:
- 影响因子:10.6
- 作者:Qianlong Wang;Weixian Liao;Y. Guo;Michael McGuire;Wei Yu
- 通讯作者:Qianlong Wang;Weixian Liao;Y. Guo;Michael McGuire;Wei Yu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qianlong Wang其他文献
Improving In-Context Learning with Prediction Feedback for Sentiment Analysis
通过情感分析的预测反馈改进情境学习
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Hongling Xu;Qianlong Wang;Yice Zhang;Min Yang;Xi Zeng;Bing Qin;Ruifeng Xu - 通讯作者:
Ruifeng Xu
Critical Areas Detection and Vehicle Speed Estimation System Towards Intersection-Related Driving Behavior Analysis
用于交叉路口相关驾驶行为分析的关键区域检测和车速估计系统
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Qianlong Wang;Yongjie Liu;Jingwen Liu;Yanlei Gu;Shunsuke;Kamijo - 通讯作者:
Kamijo
Combustion characteristics of skeleton polymer reinforced paraffin-wax fuel grain for applications in hybrid rocket motors
混合火箭发动机用骨架聚合物增强石蜡燃料颗粒的燃烧特性
- DOI:
10.1016/j.combustflame.2022.112055 - 发表时间:
2022 - 期刊:
- 影响因子:4.4
- 作者:
Yi Wu;Zixiang Zhang;Qianlong Wang;Ningfei Wang - 通讯作者:
Ningfei Wang
Summary-aware attention for social media short text abstractive summarization
对社交媒体短文本抽象摘要的摘要感知关注
- DOI:
10.1016/j.neucom.2020.04.136 - 发表时间:
2020-05 - 期刊:
- 影响因子:6
- 作者:
Qianlong Wang;Jiangtao Ren - 通讯作者:
Jiangtao Ren
The Research of SURF Image Matching Method Based on Region and Feature Information
基于区域和特征信息的SURF图像匹配方法研究
- DOI:
10.2991/amms-17.2017.13 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Rongbao Chen;Qianlong Wang;Honghui Jiang;Yang Liu;Dawei Tang - 通讯作者:
Dawei Tang
Qianlong Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
IL-17A通过STAT5影响CNS2区域甲基化抑制调节性T细胞功能在银屑病发病中的作用和机制研究
- 批准号:82304006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-20a通过调控CD4+T细胞焦亡促进CNS炎性脱髓鞘疾病的发生及机制研究
- 批准号:82201491
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
血浆CNS来源外泌体中寡聚磷酸化α-synuclein对PD病程的提示研究
- 批准号:82101506
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于脑微血管内皮细胞模型的毒力岛4在单增李斯特菌CNS炎症中的作用及机制研究
- 批准号:32160834
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
相似海外基金
CNS Core: Small: Enabling Real-time, Scalable and Secure Collaborative Intelligence on the Edge
CNS 核心:小型:在边缘实现实时、可扩展且安全的协作智能
- 批准号:
2140346 - 财政年份:2022
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
CISE-MSI: RCBP-ED: CNS: MBARKA: A Multi-tier Basic Architecture for fault-toleRant and K-secure IoT-based Autonomous campus monitoring systems
CISE-MSI:RCBP-ED:CNS:MBARKA:用于容错和 K-secure 基于物联网的自主校园监控系统的多层基本架构
- 批准号:
2219785 - 财政年份:2022
- 资助金额:
$ 17.42万 - 项目类别:
Standard Grant
Ethnicity-associated, differential CNS demyelinating autoimmune disease severity: reconciling identity, ancestry and neurotoxic antibody response
种族相关的、不同的中枢神经系统脱髓鞘自身免疫性疾病严重程度:协调身份、血统和神经毒性抗体反应
- 批准号:
10283790 - 财政年份:2021
- 资助金额:
$ 17.42万 - 项目类别:
Elucidating Structural and Functional Alterations of CNS Pericytes on Chronic Brain Implants
阐明慢性脑植入物中中枢神经系统周细胞的结构和功能改变
- 批准号:
10319300 - 财政年份:2021
- 资助金额:
$ 17.42万 - 项目类别:
CNS Effects of Alcohol: Cellular Neurobiology
酒精对中枢神经系统的影响:细胞神经生物学
- 批准号:
10419301 - 财政年份:2021
- 资助金额:
$ 17.42万 - 项目类别: