CIF: Small: Ensuring Accuracy in Differentially Private Decentralized Optimization
CIF:小:确保差分隐私去中心化优化的准确性
基本信息
- 批准号:2334449
- 负责人:
- 金额:$ 59.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Advances in wireless communications and low-cost computing devices have enabled a proliferation of large distributed networks of data collection systems, constituting a major component of the emergent Internet of Things (IoT), Intelligent Transportation Systems (ITS), and the Smart Grid (SG) . Complementing these advances is the significant progress in decentralized optimization software that enables the basic functionalities of such distributed networked systems, including cooperative control, network information fusion, network coordination, and distributed data mining/learning. However, information sharing over such large networks creates vulnerabilities and concerns about privacy, which can be especially acute in privacy-sensitive applications such as smart metering and connected vehicle networks. Differential privacy is the most widely used protective mechanism for privacy due to its simplicity, scalability, and strong resilience against attempts to recover sensitive information from post-processed data. However, all existing differential-privacy solutions for decentralized optimization face the dilemma of how to achieve data privacy protection by compromising the optimizer's speed of convergence rather than its accuracy. This project leverages on the PI’s recent discovery that it is possible to achieve differential privacy guarantees without compromising utility by leveraging on the optimizer's speed of convergence rather than its accuracy. Specifically, the project will establish theoretical and algorithmic foundations for the problem of ensuring differential privacy in decentralized optimization without losing provable optimality. In addition to broadly enabling more effective privacy protections for decentralized networks, the project will impact education by enriching the current curriculum on control and networked systems, and training undergraduate and graduate students in interdisciplinary information privacy research and its applications. This project will establish theoretical and algorithmic foundations for ensuring differential privacy in decentralized optimization algorithms without losing provable optimality. The main research thrusts are to: (1) Investigate the sacrifice in convergence speed in differentially private decentralized optimization with provable optimality using an information-theoretic approach; (2) Explore and establish differential privacy without losing provable optimality in decentralized online optimization, where data are not pre-collected before implementing the algorithm but rather are acquired in a sequential manner; (3) Explore and establish differential privacy without losing probable optimality in decentralized optimization algorithms subject to shared coupling constraints among participating agents’ decision variables; (4) Explore and establish differential privacy in decentralized Nash games (which are essentially decentralized optimization problems with noncooperative agents) without losing provable optimality; (5) Evaluate obtained results using numerical simulations as well as experiments on real-word distributed systems in smart grids and networked intelligent vehicles. This project is jointly funded by Core Program of the Computing and Communication Foundations Division (CCF) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
无线通信和低成本计算设备的进步使得数据收集系统的大型分布式网络能够激增,构成新兴的物联网(IoT)、智能交通系统(ITS)和智能电网(SG)的主要组成部分。与这些进步相辅相成的是去中心化优化软件的重大进展,该软件实现了此类分布式网络系统的基本功能,包括协作控制、网络信息融合、网络协调和分布式数据挖掘/学习。然而,在这样的大型网络上共享信息会产生漏洞和对隐私的担忧,这在智能计量和联网车辆网络等隐私敏感应用中尤其严重。差分隐私是最广泛使用的隐私保护机制,由于其简单性,可扩展性和强大的弹性,以防止试图从后处理数据中恢复敏感信息。然而,所有现有的分散式优化的差分隐私解决方案都面临着如何通过牺牲优化器的收敛速度而不是其准确性来实现数据隐私保护的困境。该项目利用PI最近的发现,即通过利用优化器的收敛速度而不是其准确性,可以在不影响效用的情况下实现差分隐私保证。具体来说,该项目将为在分散优化中确保差分隐私而不失去可证明的最优性的问题建立理论和算法基础。除了广泛地为去中心化网络提供更有效的隐私保护外,该项目还将通过丰富当前的控制和网络系统课程来影响教育,并对本科生和研究生进行跨学科信息隐私研究及其应用的培训。该项目将建立理论和算法基础,以确保分散优化算法中的差分隐私,而不会失去可证明的最优性。主要研究内容包括:(1)利用信息论方法研究具有可证明最优性的差分隐私分散优化算法的收敛速度损失;(2)在分散在线优化算法中探索和建立不损失可证明最优性的差分隐私算法,其中数据不是在算法实现之前预先收集的,而是以顺序的方式获取的;(3)在分布式优化算法中探索和建立差分隐私,同时不丢失参与代理决策变量之间共享耦合约束的可能最优性;(4)在分布式Nash博弈中探索和建立差分隐私(本质上是非合作代理的分散优化问题),而不会失去可证明的最优性;(5)使用数值模拟以及在智能电网和联网智能车辆中的真实世界分布式系统上的实验来评估所获得的结果。该项目由计算和通信基金会(CCF)核心计划和激励竞争研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yongqiang Wang其他文献
Gold-Catalyzed Cyclization/Hydroboration of 1,6-Enynes: Synthesis of Bicyclo[3.1.0]hexane Boranes
金催化 1,6-烯炔的环化/硼氢化:双环[3.1.0]己烷硼烷的合成
- DOI:
10.1021/acs.orglett.2c03812 - 发表时间:
2022 - 期刊:
- 影响因子:5.2
- 作者:
Guanghui Wang;Yongqiang Wang;Zengzeng Li;Haotian Li;Mingwu Yu;Maofu Pang;Ximei Zhao - 通讯作者:
Ximei Zhao
A Compact SISL Balun Using Compensated Interdigital Capacitor
使用补偿叉指电容器的紧凑型 SISL 巴伦
- DOI:
10.1109/lmwc.2017.2734747 - 发表时间:
2017-08 - 期刊:
- 影响因子:3
- 作者:
Yongqiang Wang;Kaixue Ma;Shouxian Mou - 通讯作者:
Shouxian Mou
Embryonic and larval development in barfin flounder Verasper moseri (Jordan and Gilbert)
条鳍鲽 Verasper moseri 的胚胎和幼体发育(Jordan 和 Gilbert)
- DOI:
10.1007/s00343-010-9251-7 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Rongbin Du;Yongqiang Wang;Haibin Jiang;Liming Liu;Maojian Wang;Tianbao Li;Shubao Zhang - 通讯作者:
Shubao Zhang
Effect of nonmagnetic substitution on the magnetic correlation of the frustrated Ca3CoMn1-xGaxO6 (0≤x≤0.2)
非磁性取代对受挫Ca3CoMn1-xGaxO6 (0≤x≤0.2)磁相关性的影响
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:6.2
- 作者:
Gaoshang Gong;Chenfei Shi;Jinjin Guo;Gebru Zerihun;Yongqiang Wang;Yang Qiu;Yuling Su - 通讯作者:
Yuling Su
Reversal and non-reversal ferroelectric polarizations in a Y-type hexaferrite
Y 型六角形铁氧体中的反转和非反转铁电极化
- DOI:
10.1039/c8tc05247f - 发表时间:
2019 - 期刊:
- 影响因子:6.4
- 作者:
Yongqiang Wang;Shile Zhang;W. K. Zhu;Langsheng Ling;Lei Zhang;Zhe Qu;Li Pi;Wei Tong;Mingliang Tian - 通讯作者:
Mingliang Tian
Yongqiang Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yongqiang Wang', 18)}}的其他基金
FRR: Collaborative Research: Collaborative Learning for Multi-robot Systems with Model-enabled Privacy Protection and Safety Supervision
FRR:协作研究:具有模型支持的隐私保护和安全监督的多机器人系统协作学习
- 批准号:
2219487 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CIF: Small: Deep Stochasticity for Private Collaborative Deep Learning
CIF:小:私人协作深度学习的深度随机性
- 批准号:
2215088 - 财政年份:2022
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Harnessing Intrinsic Dynamics for Inherently Privacy-preserving Decentralized Optimization
合作研究:CIF:中:利用内在动力学实现固有隐私保护的去中心化优化
- 批准号:
2106293 - 财政年份:2021
- 资助金额:
$ 59.99万 - 项目类别:
Continuing Grant
Encrypted control for privacy-preserving and secure cyber-physical systems
隐私保护和安全网络物理系统的加密控制
- 批准号:
1912702 - 财政年份:2019
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
EAGER: Control Theory for Real-time Privacy-preserving Consensus Control of Engineering Networks
EAGER:工程网络实时隐私保护共识控制的控制理论
- 批准号:
1824014 - 财政年份:2018
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CICI: RSARC: Secure Time for Cyberinfrastructure Security
CICI:RSARC:网络基础设施安全的安全时间
- 批准号:
1738902 - 财政年份:2017
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
STTR Phase I: Eco-Friendly Mass Production of Highly Conductive Graphene Sheets with Controlled Structures
STTR第一阶段:结构可控的高导电石墨烯片的环保大规模生产
- 批准号:
1346496 - 财政年份:2014
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
STTR Phase I: Surface- and Structural Engineering of Colloidal Quantum Dots Towards Efficient and
STTR 第一阶段:胶体量子点的表面和结构工程,以实现高效和
- 批准号:
1010491 - 财政年份:2010
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
STTR Phase I: Magnetic Nanoparticle Microfluidics for High Efficient Capture, Separation and Concetration of Foodborne Pathogens
STTR 第一阶段:用于高效捕获、分离和浓缩食源性病原体的磁性纳米颗粒微流体
- 批准号:
0810626 - 财政年份:2008
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
SBIR Phase II: Development of Cadmium-Free, Water-Soluble and Multicolor Quantum Dots by Chemical Doping
SBIR 第二阶段:通过化学掺杂开发无镉、水溶性和多色量子点
- 批准号:
0823040 - 财政年份:2008
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
CNS Core: Small: Ensuring Privacy by Runtime Analog Sanitization of Solid State Storage Devices
CNS 核心:小型:通过固态存储设备的运行时模拟清理确保隐私
- 批准号:
2403540 - 财政年份:2023
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Post hoc Explanations in the Wild: Exposing Vulnerabilities and Ensuring Robustness
合作研究:RI:小型:事后解释:暴露漏洞并确保稳健性
- 批准号:
2008461 - 财政年份:2020
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Post hoc Explanations in the Wild: Exposing Vulnerabilities and Ensuring Robustness
合作研究:RI:小型:事后解释:暴露漏洞并确保稳健性
- 批准号:
2008956 - 财政年份:2020
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
CNS Core: Small: Ensuring Privacy by Runtime Analog Sanitization of Solid State Storage Devices
CNS 核心:小型:通过固态存储设备的运行时模拟清理确保隐私
- 批准号:
2007403 - 财政年份:2020
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
Providing new and essential capabilities for situational awareness of small marine craft ensuring safe and efficient operation in dynamic sea conditio
为小型船舶的态势感知提供新的基本功能,确保在动态海洋条件下安全高效地运行
- 批准号:
2428271 - 财政年份:2019
- 资助金额:
$ 59.99万 - 项目类别:
Studentship
CIF: Small: Ensuring robustness of communication between networked energy harvesting nodes
CIF:小:确保网络能量收集节点之间通信的稳健性
- 批准号:
1618145 - 财政年份:2016
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
RES'EAU-WaterNet: A Network ensuring safe drinking water for small and rural communities
RESEAU-WaterNet:确保小型和农村社区安全饮用水的网络
- 批准号:
364635-2007 - 财政年份:2013
- 资助金额:
$ 59.99万 - 项目类别:
Strategic Network Grants Program
RES'EAU-WaterNet: A Network ensuring safe drinking water for small and rural communities
RESEAU-WaterNet:确保小型和农村社区安全饮用水的网络
- 批准号:
364635-2007 - 财政年份:2012
- 资助金额:
$ 59.99万 - 项目类别:
Strategic Network Grants Program
SHF: Small: Ensuring Reliability and Portability of Scientific Software for Heterogeneous Architectures
SHF:小型:确保异构架构科学软件的可靠性和可移植性
- 批准号:
1218075 - 财政年份:2012
- 资助金额:
$ 59.99万 - 项目类别:
Standard Grant
RES'EAU-WaterNet: A Network ensuring safe drinking water for small and rural communities
RESEAU-WaterNet:确保小型和农村社区安全饮用水的网络
- 批准号:
364635-2007 - 财政年份:2011
- 资助金额:
$ 59.99万 - 项目类别:
Strategic Network Grants Program