NSF Convergence Accelerator Track J: Building a digital twin for national-scale field-level crop monitoring, prediction, and decision support
NSF 融合加速器轨道 J:为国家规模的田间作物监测、预测和决策支持构建数字孪生
基本信息
- 批准号:2236137
- 负责人:
- 金额:$ 75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Crop production in the U.S. feeds not only the U.S. but also the world. During the 2020/2021 fiscal year, U.S. exports accounted for over 25% of total grain traded globally. A healthy crop cropping systems (CCS) is vital for achieving food and nutrient security of the U.S. and the world and enhancing the competitiveness of U.S. agriculture in the world market. Yet, crop production creates large environmental footprint. The USDA Agricultural Innovation Agenda calls for increasing U.S. agricultural production by 40% while cutting its environmental footprint in half by 2050. Sound crop management decision-making is a key in reaching this ambitious goal. Traditionally, crop management decisions are made by individuals based on their empirical judgment, which is often subjective and far from optimal. On the other hand, the science-based, data-driven approach for crop management decision-making relies on timely and accurate information on current and predicted future conditions of crop, soil, weather, and market to make optimal decisions. Studies demonstrated that the data-driven approach can overcome the inherent deficiencies in the empirical approach and bring significant economic and environmental benefits. However, it remains a challenge for stakeholders to utilize the data-driven approach because they don’t have full and effective access to the timely and accurate information and lack facilities or knowledge to process the information. This project will provide such timely information and decision support to stakeholders for enabling the data-driven optimal decision-making nationwide at field scales by developing the CropSmart Digital Twin (CSDT). CSDT will not only accurately represents the current conditions, but also predict, with acceptable confidence levels, future conditions of CCS with hypothetical “what if” scenarios, resulting in actionable predictions. The project will provide significant help in reaching the USDA Innovation goal and greatly enhance food and nutrition security of the U.S. and the world. Crop production is the foundation for food and nutrition security in the U.S. and the world. However, it also creates large environmental footprint. The USDA Agricultural Innovation Agenda calls for increasing U.S. agricultural production by 40% while cutting its environmental footprint in half by 2050. The data-driven approach for crop management decision-making, which relies on timely and accurate information on current and predicted future conditions of crop, soil, weather, and market to make optimal management decisions, has demonstrated its great potential to help USDA reach its ambitious goal. However, it remains a challenge for stakeholders to adopt the approach because they don’t have effective access to the decision-ready information (DRI) and lack facilities or knowledge to process the information. This project proposes to build the CropSmart Digital Twin (CSDT) with innovative Earth system DT technologies to facilitate the data-driven approach. The overarching goal is to ensure food and nutrition security by enhancing crop productivity and reducing environmental footprint in the U.S. through wide adoption of the data-driven approach enabled by CSDT. The major project activities include: (1) understanding stakeholders’ requirements on DRI and decision support; (2) identifying existing data, technologies, and gaps for CSDT; (3) quickly prototyping CSDT by integrating existing technologies and developing gap-filling technologies; 4) broadening participation and impact by training agricultural workforce through comprehensive extension; and (5) establishing a community-based CSDT network for long-term sustainability. This project explores the convergent approach for quickly constructing an operational DT through integration of multi-disciplinary components and services with interoperability technology. It demonstrates the advantage of multi-disciplinary collaboration and feasibility, usability, and value of DT as a multi-disciplinary integration platform for enabling the data-driven approach. The project will help USDA reach its Innovation Agenda goal and enhance food and nutrition security of the U.S. and the world.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国的农作物生产不仅养活了美国,也养活了世界。在2020/2021财年,美国出口占全球粮食贸易总额的25%以上。一个健康的作物种植系统(CCS)对于实现美国和世界的粮食和营养安全以及提高美国农业在世界市场的竞争力至关重要。然而,农作物生产造成了巨大的环境足迹。美国农业部的农业创新议程呼吁到2050年将美国农业产量提高40%,同时将其环境足迹减少一半。健全的作物管理决策是实现这一雄心勃勃目标的关键。传统上,作物管理决策是由个人根据他们的经验判断做出的,这往往是主观的,远远不是最优的。另一方面,以科学为基础、数据驱动的作物管理决策方法依赖于关于作物、土壤、天气和市场的当前和预测未来条件的及时和准确的信息,以做出最佳决策。研究表明,数据驱动方法可以克服经验方法的固有缺陷,带来显著的经济效益和环境效益。然而,对于利益攸关方来说,利用数据驱动的方法仍然是一个挑战,因为他们无法充分有效地获取及时和准确的信息,也缺乏处理信息的设施或知识。该项目将通过开发CropSmart数字双胞胎(CSDT),为利益相关者提供此类及时的信息和决策支持,以便在全国范围内实现数据驱动的最优决策。CSDT不仅将准确地表示当前条件,而且还将以可接受的置信度预测CCS的未来条件,并假设“假设”情景,从而产生可操作的预测。该项目将为实现美国农业部的创新目标提供重大帮助,并极大地提高美国和世界的食品和营养安全。作物生产是美国和世界粮食和营养安全的基础。然而,它也造成了巨大的环境足迹。美国农业部的农业创新议程呼吁到2050年将美国农业产量提高40%,同时将其环境足迹减少一半。数据驱动的作物管理决策方法依赖于关于当前和预测的作物、土壤、天气和市场条件的及时和准确的信息,以做出最优的管理决策,已经显示出其帮助美国农业部实现其雄心勃勃的目标的巨大潜力。然而,对于利益相关者来说,采用这种方法仍然是一个挑战,因为他们无法有效地访问决策就绪信息(DRI),并且缺乏处理信息的设施或知识。该项目建议用创新的地球系统DT技术建立CropSmart数字双胞胎(CSDT),以促进数据驱动的方法。总体目标是通过广泛采用CSDT支持的数据驱动的方法,提高作物生产率,减少美国的环境足迹,从而确保粮食和营养安全。主要项目活动包括:(1)了解利益攸关方对DRI和决策支持的要求;(2)确定CSDT的现有数据、技术和差距;(3)通过整合现有技术和开发填补空白的技术,快速制作CSDT的原型;4)通过全面推广培训农业劳动力,扩大参与和影响;以及(5)建立以社区为基础的CSDT网络,以实现长期可持续性。该项目探索了通过多学科组件和服务与互操作技术的集成来快速构建可操作的DT的融合方法。它展示了多学科协作的优势,以及DT作为支持数据驱动方法的多学科集成平台的可行性、可用性和价值。该项目将帮助美国农业部实现其创新议程目标,并加强美国和世界的食品和营养安全。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated In-Season Crop-Type Data Layer Mapping Without Ground Truth for the Conterminous United States Based on Multisource Satellite Imagery
- DOI:10.1109/tgrs.2024.3361895
- 发表时间:2024
- 期刊:
- 影响因子:8.2
- 作者:Hui Li;Liping Di;Chen Zhang;Li Lin;Liying Guo;E. Yu;Zhengwei Yang
- 通讯作者:Hui Li;Liping Di;Chen Zhang;Li Lin;Liying Guo;E. Yu;Zhengwei Yang
Cyberinformatics tool for in-season crop-specific land cover monitoring: Design, implementation, and applications of iCrop
- DOI:10.1016/j.compag.2023.108199
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Chen Zhang;Liping Di;Li Lin;Haoteng Zhao;Hui Li;Anna Yang;Liying Guo;Zhengwei Yang
- 通讯作者:Chen Zhang;Liping Di;Li Lin;Haoteng Zhao;Hui Li;Anna Yang;Liying Guo;Zhengwei Yang
Hyperspectral Image Classification of Agricultural Tillage Practices Using Spatial-aware Collaborative Representation
- DOI:10.1109/agro-geoinformatics59224.2023.10233552
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Chiranjibi Shah;Q. Du
- 通讯作者:Chiranjibi Shah;Q. Du
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liping Di其他文献
Estimating Crop LAI Using Spectral Feature Extraction and the Hybrid Inversion Method
- DOI:
https://doi.org/10.3390/rs12213534 - 发表时间:
2020 - 期刊:
- 影响因子:5
- 作者:
Liang Liang;Di Geng;Juan Yan;Siyi Qiu;Liping Di;Shuguo Wang;Lu Xu;Lijuan Wang;Jianrong Kang;Li Li - 通讯作者:
Li Li
Grid computing enhances standards-compatible geospatial catalogue service
- DOI:
10.1016/j.cageo.2009.09.006 - 发表时间:
2010-04-01 - 期刊:
- 影响因子:
- 作者:
Aijun Chen;Liping Di;Yuqi Bai;Yaxing Wei;Yang Liu - 通讯作者:
Yang Liu
Deriving Non-Cloud Contaminated Sentinel-2 Images with RGB and Near-Infrared Bands from Sentinel-1 Images Based on a Conditional Generative Adversarial Network
基于条件生成对抗网络从 Sentinel-1 图像中导出具有 RGB 和近红外波段的非云污染 Sentinel-2 图像
- DOI:
10.3390/rs13081512 - 发表时间:
2021-04 - 期刊:
- 影响因子:0
- 作者:
Quan Xiong;Liping Di;Quanlong Feng;Diyou Liu;Wei Liu;Xuli Zan;Lin Zhang;Zhe Liu;Xiaochuang Yao;Xiaodong Zhang - 通讯作者:
Xiaodong Zhang
Comparison of two satellite-based soil moisture reconstruction algorithms: A case study in the state of Oklahoma, USA
两种基于卫星的土壤湿度重建算法的比较:以美国俄克拉荷马州为例
- DOI:
10.1016/j.jhydrol.2020.125406 - 发表时间:
2020 - 期刊:
- 影响因子:6.4
- 作者:
Yangxiaoyue Liu;Ling Yao;Wenlong Jing;Liping Di;Ji Yang;Yong Li - 通讯作者:
Yong Li
Bibliometric Analysis of OGC Specifications between 1994 and 2020 Based on Web of Science (WoS)
基于Web of Science(WoS)的1994年至2020年OGC规范文献计量分析
- DOI:
10.3390/ijgi11040251 - 发表时间:
2022-04 - 期刊:
- 影响因子:3.4
- 作者:
Mingrui Huang;Xiangtao Fan;Hongdeng Jian;Hongyue Zhang;Liying Guo;Liping Di - 通讯作者:
Liping Di
Liping Di的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liping Di', 18)}}的其他基金
NSF Convergence Accelerator Track J Phase 2: CropSmart - a digital twin for making wiser cropping decisions nationwide
NSF 融合加速器轨道 J 第 2 阶段:CropSmart - 用于在全国范围内做出更明智的种植决策的数字孪生
- 批准号:
2345039 - 财政年份:2023
- 资助金额:
$ 75万 - 项目类别:
Cooperative Agreement
EAGER: Collaborative Research: Spatiotemporal transfer learning for enabling cross-country and cross-hemisphere in-season crop mapping
EAGER:协作研究:时空迁移学习,用于实现跨国和跨半球的当季作物绘图
- 批准号:
2228000 - 财政年份:2022
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
EarthCube Integration: CyberWay--Integrated Capabilities of EarthCube Building Blocks for Facilitating Cyber-based Innovative Way of Interdisciplinary Geoscience Studies
EarthCube集成:CyberWay——EarthCube构建模块的集成能力,促进基于网络的跨学科地球科学研究创新方式
- 批准号:
1740693 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
INFEW/T2:WaterSmart: A Cyberinfrastructure-Based Integrated Agro-Geoinformatic Decision-Support Web Service System to Facilitate Informed Irrigation Decision-Making
INFEW/T2:WaterSmart:基于网络基础设施的综合农业地理信息决策支持网络服务系统,促进知情灌溉决策
- 批准号:
1739705 - 财政年份:2017
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
EarthCube Building Blocks: CyberConnector: Bridging the Earth Observations and Earth Science Modeling for Supporting Model Validation, Verification, and Inter-comparison
EarthCube 构建模块:CyberConnector:连接地球观测和地球科学建模以支持模型验证、验证和相互比较
- 批准号:
1440294 - 财政年份:2014
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
EarthCube Domain End-User Workshop: Engaging the Atmospheric Cloud/Aerosol/Composition Community
EarthCube 域最终用户研讨会:参与大气云/气溶胶/成分社区
- 批准号:
1342148 - 财政年份:2013
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Interoperability Testbed-Assessing a Layered Architecture for Integration of Existing Capabilities
EAGER:协作研究:互操作性测试台 - 评估用于集成现有功能的分层架构
- 批准号:
1239615 - 财政年份:2012
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator, Track K: Mapping the nation's wetlands for equitable water quality, monitoring, conservation, and policy development
NSF 融合加速器,K 轨道:绘制全国湿地地图,以实现公平的水质、监测、保护和政策制定
- 批准号:
2344174 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:
2344228 - 财政年份:2024
- 资助金额:
$ 75万 - 项目类别:
Standard Grant