EAGER: Collaborative Research: Spatiotemporal transfer learning for enabling cross-country and cross-hemisphere in-season crop mapping

EAGER:协作研究:时空迁移学习,用于实现跨国和跨半球的当季作物绘图

基本信息

  • 批准号:
    2228000
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Crop production is a major industry in the United States (U.S.). In 2021, the U.S. grain export accounted for over 40% share of international grain trade. Millions of U.S. farmers depend on international market for living and prosperity. However, the U.S. grain export is not only facing tough competition from other export countries, but also impacted by grain yield in import countries. In order to gain the competitive edge, stakeholders need to know as early as possible where and how many acres each type of crops that have been planted in a growing season around the world so that yield can be estimated, production and demand balance can be assessed, and grain prices can be predicted. This requires generating in-season crop maps of both U.S. and foreign countries. The classic method to generate in-season crop maps needs a large amount of verified information on crops (i.e., ground truths) to train algorithms for classifying in-season satellite remote sensing images. However, it is difficult or even impossible to obtain ground truths in foreign countries, particularly in early season. This study proposes to develop a spatiotemporally transferable machine-learning algorithm which will be trained with U.S. data and applied to in-season satellite remote sensing images of foreign countries for creating the in-season crop maps of the countries. Success of this project will make the in-season crop mapping of foreign countries possible. The project will significantly enhance the competitiveness and profitability of U.S. agriculture, increase the food security of the world, and potentially bring billions-of-dollars economic benefits to U.S. farmers.Satellite remote sensing with ground truth tagging is the current practice for crop mapping. However, it suffers from two problems: 1) Unavailability of ground truth in foreign countries; 2) Spatiotemporal intransferability of trained classifiers. This study will design spatiotemporally transferable learning algorithm and temporal learning strategy that would maximally transfer label data and models from U.S. to foreign countries. The proposed method utilizes adversarial training and contrastive learning. Through this two-player game, the feature extractor produces domain-invariant features. A classifier trained on this domain-invariant representation can transfer its model to a new domain because the target features match those seen during training, thus bridging the gap between times and locations. The U.S. trained algorithm will be tested in Canada and Brazil to demonstrate its cross-country and cross-hemisphere transferability. Scientifically this project will advance landcover science in in-season crop mapping by offering a novel method of transfer learning, advance machine learning in unsupervised domain adaptation across both space and time, and offer new methods to derive spatiotemporally invariant features from time-series remote sensing images. Socioeconomically this project will enhance competitiveness and profitability of U.S. agriculture, increase food security of the world, and potentially bring billions-of-dollars benefits to U.S. farmers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
农作物生产是美国的主要产业。2021年,美国粮食出口占国际粮食贸易的40%以上。数以百万计的美国农民依靠国际市场生存和繁荣。然而,美国的粮食出口不仅面临着来自其他出口国的激烈竞争,而且受到进口国粮食产量的影响。为了获得竞争优势,利益攸关方需要尽早知道世界各地在一个生长季种植了每种作物的地点和面积,以便能够估计产量,评估生产和需求平衡,并预测谷物价格。这需要生成美国和其他国家的季节性作物地图。生成季节作物地图的经典方法需要大量经过验证的作物信息(即地面实况)来训练用于对季节卫星遥感图像进行分类的算法。然而,在国外很难甚至不可能获得地面真相,特别是在赛季初。这项研究建议开发一种时空可转移的机器学习算法,该算法将使用美国的数据进行训练,并应用于外国的季节性卫星遥感图像,以生成这些国家的季节性作物地图。该项目的成功将使外国的当季作物测绘成为可能。该项目将显著提高美国农业的竞争力和盈利能力,增加世界粮食安全,并可能为美国农民带来数十亿美元的经济效益。卫星遥感与地面真实标记是目前作物测绘的做法。然而,它面临着两个问题:1)国外基本事实的不可获得性;2)训练好的分类器的时空不可迁移性。这项研究将设计时空可迁移的学习算法和时间学习策略,以最大限度地将标签数据和模型从美国转移到国外。该方法利用对抗性训练和对比学习。通过这个两人博弈,特征抽取器产生领域不变的特征。在这种领域不变表示上训练的分类器可以将其模型转移到新的领域,因为目标特征与训练期间看到的匹配,从而弥合了时间和位置之间的差距。美国训练的算法将在加拿大和巴西进行测试,以证明其跨国家和跨半球的可转移性。从科学上讲,该项目将通过提供一种新的转移学习方法来推动季节性作物制图中的土地覆盖科学,促进机器学习在空间和时间上的无监督区域适应,并提供从时间序列遥感图像中提取时空不变特征的新方法。在社会经济方面,该项目将提高美国农业的竞争力和盈利能力,提高世界粮食安全,并可能为美国农民带来数十亿美元的利益。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhancing USDA NASS Cropland Data Layer with Segment Anything Model
  • DOI:
    10.1109/agro-geoinformatics59224.2023.10233404
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Zhang;Purva Marfatia;Hamza Farhan;L. Di;Li Lin;Haoteng Zhao;Hui Li;Md Didarul Islam;Zhengwei Yang
  • 通讯作者:
    Chen Zhang;Purva Marfatia;Hamza Farhan;L. Di;Li Lin;Haoteng Zhao;Hui Li;Md Didarul Islam;Zhengwei Yang
A Review of Remote Sensing in Sugarcane Mapping
Prediction of Crop Planting Map Using One-dimensional Convolutional Neural Network and Decision Tree Algorithm
利用一维卷积神经网络和决策树算法预测农作物种植图
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liping Di其他文献

Estimating Crop LAI Using Spectral Feature Extraction and the Hybrid Inversion Method
  • DOI:
    https://doi.org/10.3390/rs12213534
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Liang Liang;Di Geng;Juan Yan;Siyi Qiu;Liping Di;Shuguo Wang;Lu Xu;Lijuan Wang;Jianrong Kang;Li Li
  • 通讯作者:
    Li Li
Grid computing enhances standards-compatible geospatial catalogue service
  • DOI:
    10.1016/j.cageo.2009.09.006
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Aijun Chen;Liping Di;Yuqi Bai;Yaxing Wei;Yang Liu
  • 通讯作者:
    Yang Liu
Deriving Non-Cloud Contaminated Sentinel-2 Images with RGB and Near-Infrared Bands from Sentinel-1 Images Based on a Conditional Generative Adversarial Network
基于条件生成对抗网络从 Sentinel-1 图像中导出具有 RGB 和近红外波段的非云污染 Sentinel-2 图像
  • DOI:
    10.3390/rs13081512
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Quan Xiong;Liping Di;Quanlong Feng;Diyou Liu;Wei Liu;Xuli Zan;Lin Zhang;Zhe Liu;Xiaochuang Yao;Xiaodong Zhang
  • 通讯作者:
    Xiaodong Zhang
Comparison of two satellite-based soil moisture reconstruction algorithms: A case study in the state of Oklahoma, USA
两种基于卫星的土壤湿度重建算法的比较:以美国俄克拉荷马州为例
  • DOI:
    10.1016/j.jhydrol.2020.125406
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Yangxiaoyue Liu;Ling Yao;Wenlong Jing;Liping Di;Ji Yang;Yong Li
  • 通讯作者:
    Yong Li
Bibliometric Analysis of OGC Specifications between 1994 and 2020 Based on Web of Science (WoS)
基于Web of Science(WoS)的1994年至2020年OGC规范文献计量分析

Liping Di的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liping Di', 18)}}的其他基金

NSF Convergence Accelerator Track J Phase 2: CropSmart - a digital twin for making wiser cropping decisions nationwide
NSF 融合加速器轨道 J 第 2 阶段:CropSmart - 用于在全国范围内做出更明智的种植决策的数字孪生
  • 批准号:
    2345039
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track J: Building a digital twin for national-scale field-level crop monitoring, prediction, and decision support
NSF 融合加速器轨道 J:为国家规模的田间作物监测、预测和决策支持构建数字孪生
  • 批准号:
    2236137
  • 财政年份:
    2022
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EarthCube Integration: CyberWay--Integrated Capabilities of EarthCube Building Blocks for Facilitating Cyber-based Innovative Way of Interdisciplinary Geoscience Studies
EarthCube集成:Cyber​​Way——EarthCube构建模块的集成能力,促进基于网络的跨学科地球科学研究创新方式
  • 批准号:
    1740693
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
INFEW/T2:WaterSmart: A Cyberinfrastructure-Based Integrated Agro-Geoinformatic Decision-Support Web Service System to Facilitate Informed Irrigation Decision-Making
INFEW/T2:WaterSmart:基于网络基础设施的综合农业地理信息决策支持网络服务系统,促进知情灌溉决策
  • 批准号:
    1739705
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EarthCube Building Blocks: CyberConnector: Bridging the Earth Observations and Earth Science Modeling for Supporting Model Validation, Verification, and Inter-comparison
EarthCube 构建模块:Cyber​​Connector:连接地球观测和地球科学建模以支持模型验证、验证和相互比较
  • 批准号:
    1440294
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EarthCube Domain End-User Workshop: Engaging the Atmospheric Cloud/Aerosol/Composition Community
EarthCube 域最终用户研讨会:参与大气云/气溶胶/成分社区
  • 批准号:
    1342148
  • 财政年份:
    2013
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER: Collaborative Research: Interoperability Testbed-Assessing a Layered Architecture for Integration of Existing Capabilities
EAGER:协作研究:互操作性测试台 - 评估用于集成现有功能的分层架构
  • 批准号:
    1239615
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345583
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy for persistent sensing of carbon dioxide under near shore waves.
合作研究:EAGER:近岸波浪下持续感知二氧化碳的能量。
  • 批准号:
    2339062
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333603
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347623
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了