EAGER: Magnetoelectric Thin Films for High Frequency Devices
EAGER:用于高频设备的磁电薄膜
基本信息
- 批准号:2236879
- 负责人:
- 金额:$ 29.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Tunable radio-frequency/microwave signal-processing devices, such as filters, resonators, phase-shifters, are widely used in modern communication systems. With the advent of novel applications related to 5G, new technologies are being developed so that devices can be tuned broadly across multiple frequency channels. Conventionally, magnetic fields are used for tuning such devices. However, they are bulky, slow, and consume lot of power. Thus, there is a critical need for performance improvement of such frequency tunable devices. This NSF project is aimed to develop and test electrically tunable film based high frequency devices that can be rapidly tuned in limited power budget. Objectives of this project are to develop magnetoelectrics multiferroics (ME MFs) composite films based electrically tunable high-frequency devices with large figure of merit (=tunability/insertion-losses) and power-efficiency. Such composite films consists of magnetic and ferroelectric materials and can be tuned electrically and magnetically due to ME coupling. The intellectual merit of the project primarily includes: (i) gaining comprehensive understanding on role of distribution and ratio of magnetic and ferroelectric phases in the composite films to achieve large ME coupling as well as (ii) fabricating and testing ME film based resonators and filters at higher frequencies. The project will bring transformative change as electric voltages are readily available on circuits and the proposed devices are expected to exhibit large figure of merit and allow easy integration with the existing semiconductor technology. Anticipated impacts of this project include training of diverse groups of students in the field of engineering and testing of voltage tunable devices in collaboration with the Oakland University. Minority graduate students will be recruited for this research project. Underrepresented undergraduate students will gain research experience in PI’s lab through McNair Scholar Program. Summer opportunities will be provided to local high-school teachers to learn and develop educational demo kits for high school students based on tunable devices. The overarching objective of this project is to engineer magnetoelectric multiferroic nanocomposite and heterostructured films for developing electrically tunable high-frequency coplanar waveguide resonators and filters with high figure of merit. This project work includes: (i) fabrication of ferroelectric and magnetostrictive composite and heterostructured films with various distribution and ratio of the two phases, (ii) measurement and analysis of the ferroelectric properties and leakage currents, (iii) ME coupling measurements, and (iv) fabrication as well as testing of resonators and filters based on optimized films with high figure of merit. This work will contribute significantly by providing great opportunities for developing power-efficient, compact, high-frequency multi-band voltage tunable devices over 2-12 GHz with large figure of merit that can be integrated with the existing semiconductor technology. The fundamental understanding gained through this project can be expanded to other high-frequency devices, such as phase shifters, oscillators, memory devices, magnetic sensors, and antennas. The educational goal of the project is to train and prepare future generation of engineers in modern multifunctional device technology. The outreach activities will provide training, knowledge, and research exposure to a diverse group of students and high school teachers in this interdisciplinary research area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
可调谐射频/微波信号处理器件,如滤波器、谐振器、移相器等,广泛应用于现代通信系统中。随着与5G相关的新应用的出现,新技术正在开发中,以便设备可以在多个频率信道上广泛调谐。常规地,磁场用于调谐这样的装置。然而,它们体积庞大,速度缓慢,消耗大量电力。因此,迫切需要改进这种频率可调器件的性能。该NSF项目旨在开发和测试基于电可调薄膜的高频器件,这些器件可以在有限的功率预算中快速调谐。本计画的目标是发展磁电多铁性复合薄膜为基础的电性可调高频元件,具有高品质因数(=可调性/插入损耗)与功率效率。这种复合膜由磁性和铁电材料组成,并且由于ME耦合而可以进行电调谐和磁调谐。该项目的智力价值主要包括:(i)全面了解复合膜中磁性和铁电相的分布和比例的作用,以实现大的ME耦合,以及(ii)在更高频率下制造和测试ME膜基谐振器和滤波器。该项目将带来革命性的变化,因为电路上的电压很容易获得,并且预计拟议的器件将表现出很大的品质因数,并允许与现有的半导体技术轻松集成。该项目的预期影响包括与奥克兰大学合作,在工程和电压可调设备测试领域培训不同的学生群体。少数民族研究生将被招募为这个研究项目。代表性不足的本科生将通过麦克奈尔学者计划获得PI实验室的研究经验。将为当地高中教师提供暑期机会,以学习和开发基于可调设备的高中学生教育演示套件。该项目的首要目标是设计磁电多铁性纳米复合材料和异质结构薄膜,用于开发电可调谐高频共面波导谐振器和高品质因数滤波器。该项目工作包括:(i)具有各种两相分布和比率的铁电和磁致伸缩复合和异质结构膜的制造,(ii)铁电性质和漏电流的测量和分析,(iii)ME耦合测量,以及(iv)基于具有高品质因数的优化膜的谐振器和滤波器的制造和测试。这项工作将作出重大贡献,提供了巨大的机会,开发功率效率高,紧凑,高频多频带电压可调器件在2-12 GHz的大品质因数,可以与现有的半导体技术集成。通过该项目获得的基本理解可以扩展到其他高频设备,如移相器,振荡器,存储器设备,磁传感器和天线。该项目的教育目标是培养和准备现代多功能设备技术的未来一代工程师。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Menka Jain其他文献
Mott insulating low thermal expansion perovskite
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiF</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math>
莫特绝缘低热膨胀钙钛矿<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>TiF</mml:mi><
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
Donal Sheets;Kaitlin C Lyszak;Menka Jain;Gayanath W. Fernando;I. Sochnikov;Jacob Franklin;Jason N. Hancock;R. Geilhufe - 通讯作者:
R. Geilhufe
Mott insulating negative thermal expansion perovskite TiF3
莫特绝缘负热膨胀钙钛矿 TiF3
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Donal Sheets;Kaitlin C Lyszak;Menka Jain;Gayanath W. Fernando;I. Sochnikov;Jacob Franklin;R. M. Geilhufe;Jason N. Hancock - 通讯作者:
Jason N. Hancock
Magnetic and electronic structure of the film-stabilized Mott insulator BaCrO 3
薄膜稳定莫特绝缘体BaCrO 3 的磁性和电子结构
- DOI:
10.1103/physrevb.87.195129 - 发表时间:
2013 - 期刊:
- 影响因子:3.7
- 作者:
Z. H. Zhu;F. Rueckert;J. Budnick;W. Hines;Menka Jain;H. Zhang;B. Wells - 通讯作者:
B. Wells
Nanocomposite films with magnetic field sensing properties
具有磁场传感特性的纳米复合薄膜
- DOI:
10.1016/j.jssc.2013.11.037 - 发表时间:
2014 - 期刊:
- 影响因子:3.3
- 作者:
M. Staruch;Menka Jain - 通讯作者:
Menka Jain
Additive manufacturing for electrocaloric terpolymer thin films
电致热三元共聚物薄膜的增材制造
- DOI:
10.1016/j.xcrp.2025.102503 - 发表时间:
2025-03-19 - 期刊:
- 影响因子:7.300
- 作者:
Wei Ruan;Zachary Ritchey;Fei Wang;Bryan D. Huey;Menka Jain;Jeffrey R. McCutcheon;Kelly A. Burke - 通讯作者:
Kelly A. Burke
Menka Jain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Menka Jain', 18)}}的其他基金
EAGER: CRYO: New Quantum Elastocaloric Demagnetization Refrigeration for the Millikelvin Range
EAGER:CRYO:毫开尔文范围内的新型量子弹热退磁制冷
- 批准号:
2233149 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Multiferroicity in Perovskite-Type Rare-Earth Manganites
钙钛矿型稀土锰矿的多铁性
- 批准号:
1310149 - 财政年份:2013
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
相似海外基金
U.S.-Ireland R&D Partnership: Highly efficient magnetoelectric nano-antenna arrays with wide operational bandwidth
美国-爱尔兰 R
- 批准号:
2320320 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Dynamical magnetoelectric effect and magnon-photon coupling of toroidal moment
环形矩的动态磁电效应与磁子-光子耦合
- 批准号:
23K13064 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Design and development of high-performance magnetoelectric composite materials based on periodic polarization inversion structures
基于周期性极化反转结构的高性能磁电复合材料的设计与开发
- 批准号:
23H01309 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Observing topological magnetoelectric effects by magneto-optics and quantum transport
职业:通过磁光和量子输运观察拓扑磁电效应
- 批准号:
2143177 - 财政年份:2022
- 资助金额:
$ 29.93万 - 项目类别:
Continuing Grant
GOALI: Magnetoelectric Nanoparticles As Multi-Field Controlled Devices for Activation of Brain Circuitry
GOALI:磁电纳米粒子作为激活大脑回路的多场控制装置
- 批准号:
2211082 - 财政年份:2022
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
LEAPS-MPS: Investigation of topological spin texture and magnetoelectric coupling in non-centrosymmetric orthorhombic oxides
LEAPS-MPS:非中心对称正交氧化物中拓扑自旋织构和磁电耦合的研究
- 批准号:
2213443 - 财政年份:2022
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Investigation of novel photoinduced magnetoelectric effect in magnetic material
磁性材料中新型光感磁电效应的研究
- 批准号:
RTI-2023-00177 - 财政年份:2022
- 资助金额:
$ 29.93万 - 项目类别:
Research Tools and Instruments
EPITAXY, INTERFACES, AND DOMAIN BOUNDARIES OF ROOM TEMPERATURE MULTIFERROIC MAGNETOELECTRIC FILMS AND HETEROSTRUCTURES
室温多铁性磁电薄膜和异质结构的外延、界面和磁畴边界
- 批准号:
RGPIN-2019-07058 - 财政年份:2022
- 资助金额:
$ 29.93万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: DMREF: Accelerated Discovery of Artificial Multiferroics with Enhanced Magnetoelectric Coupling
合作研究:DMREF:加速发现具有增强磁电耦合的人造多铁性材料
- 批准号:
2118806 - 财政年份:2021
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
EAGER: Magnetoelectric Biosensor for Rapid Point-of-Care COVID-19 diagnostics
EAGER:用于快速护理点 COVID-19 诊断的磁电生物传感器
- 批准号:
2115588 - 财政年份:2021
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant