DMREF: Collaborative Research: GOALI: Localized Phase Transformation (LPT) Strengthening for Next-Generation Superalloys

DMREF:合作研究:GOALI:下一代高温合金的局部相变 (LPT) 强化

基本信息

项目摘要

Extraordinary Properties This Designing Materials to Revolutionize and Engineer our Future (DMREF) Grant Opportunity for Academic Liaison with Industry (GOALI) award supports an integrated experimental and computational effort to accelerate the discovery of new typs of Ni-base superalloys that will have superior high-temperature creep performance, but most likely will have been missed by the traditional trial-and-error method. Ni-base superalloys are critical enabling high-temperature structural materials that determine the efficiency and carbon footprint of a wide range of aerospace and land-based power generation systems such as gas turbines. This effort is an integral part of the national efforts under the Materials Genome Initiative (MGI) and the Integrated Computational Materials Engineering (ICME) initiative. For the first time, superalloy development will be led by computational modeling, mechanistically informed and validated by critical experiments involving novel combinatorial methods for materials processing and state-of-the-art characterization techniques. Because future materials R&D activities, requiring substantially reduced time and cost cycles, must integrate computational materials research with critical experiments, this research project will directly prepare graduate students to immediately contribute to the success of MGI/ICME in industry. Additionally, the training programs for researchers involved in materials development will accelerate the implementation of the new methodology in industry, resulting in increased effectiveness of the US materials technologists. Regarding educational outreach, the present DMREF program will engage undergraduate researchers as mentors who develop K-12 engineering outreach activities encouraging high school students with diverse ethnic backgrounds to enter science and engineering disciplines This DMREF GOALI project will exploit a new design strategy that utilizes a localized phase transformation (LPT) phenomenon to disruptively improve the high-temperature creep performance of Ni-based superalloys. LPTs occur only at extended defects and are confined locally at these defects. By integrating sophisticated computational models, at multiple scales, highly advanced materials characterization techniques, and combinatorial and accelerated methods of materials processing and property evaluation, this project will (a) search the high-dimensional alloy composition space for the occurrence of LPT by high-throughput DFT Monte Carlo calculations, and validate the DFT predictions by novel combinatorial methods to rapidly produce alloys, coupled with advanced electron microscopy and atom probe tomography; (b) establish the connection between defect type (stacking fault, anti-phase boundaries, twins, dislocations and their networks) and the nature of LPT using phase field simulations with the DFT calculations as inputs; (c) quantitatively determine the effect of LPT on the operative deformation mechanisms and develop physics-based deformation models that capture these effects using a combination of the phase field method and a mechanism-sensitive crystal plasticity model, which will enable direct validation against polycrystalline creep experiments; and (d) employ novel processing routes to stabilize high dislocation/twin density microstructures by LPT, thereby providing a new strengthening mechanism for deployment to superalloys. The GOALI partner of this project, GE Research, will respond to alloy recommendations by providing high quality alloys in single crystal and polycrystal forms. Such an integrated research effort will raise significantly the state-of-the-art in the discovery and development of new superalloys and is expected to result in new science in alloy design. The focus on superalloys will have a marked impact on a broad range of advanced technological areas including aerospace, transportation and energy.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这种设计材料具有非凡的特性,以彻底改变和设计我们的未来(DMREF)与行业联络人(Goari)奖的授予机会,支持了一项综合的实验和计算工作,以加快NI基本超级合金的新类型的发现,这些合金将具有出色的高度蠕变性能,但很可能会被传统的试验试验和ERROR MADEAT遗漏。 Ni-Base Superalloys是至关重要的,实现了高温结构材料,这些材料决定了广泛的航空航天和陆基发电系统(例如燃气轮机)的效率和碳足迹。这项工作是材料基因组倡议(MGI)和集成计算材料工程(ICME)计划的国家努力不可或缺的一部分。 Superalloy开发将首次由计算建模来领导,并通过涉及材料加工和最新表征技术的新型组合方法的关键实验进行了机械知识和验证。由于未来的材料研发活动需要大幅减少时间和成本周期,必须将计算材料研究与关键实验整合在一起,因此该研究项目将直接为研究生做好准备,以立即为MGI/ICME在行业中的成功做出贡献。此外,针对参与材料开发的研究人员的培训计划将加速行业中新方法的实施,从而提高美国材料技术人员的有效性。 Regarding educational outreach, the present DMREF program will engage undergraduate researchers as mentors who develop K-12 engineering outreach activities encouraging high school students with diverse ethnic backgrounds to enter science and engineering disciplines This DMREF GOALI project will exploit a new design strategy that utilizes a localized phase transformation (LPT) phenomenon to disruptively improve the high-temperature creep performance of Ni-based superalloys. LPT仅发生在扩展的缺陷处,并在这些缺陷处局部局部限制。 By integrating sophisticated computational models, at multiple scales, highly advanced materials characterization techniques, and combinatorial and accelerated methods of materials processing and property evaluation, this project will (a) search the high-dimensional alloy composition space for the occurrence of LPT by high-throughput DFT Monte Carlo calculations, and validate the DFT predictions by novel combinatorial methods to rapidly produce alloys, coupled with advanced electron显微镜和原子探针断层扫描; (b)在缺陷类型(堆叠故障,反相边界,双胞胎,错位及其网络)之间建立连接与使用相位场仿真(以DFT计算为输入)的LPT的性质; (c)定量确定LPT对手术变形机制的影响,并开发基于物理的变形模型,该模型使用相位场方法的组合和对机理敏感的晶体可塑性模型捕获这些效果,该模型将对多晶型蠕变实验进行直接验证; (d)采用新颖的加工途径来通过LPT稳定高位脱位/双密度微观结构,从而为超合金提供了新的增强机制。该项目的目标合作伙伴GE Research将通过提供单晶和多晶形式的高质量合金来回应合金建议。这样的综合研究工作将大大提高新超级合金发现和开发的最新作品,并有望在合金设计中获得新的科学。对超级合金的关注将对广泛的高级技术领域产生显着影响,包括航空航天,运输和能源。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,认为值得通过评估来获得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic localized phase transformation at stacking faults during creep deformation and new criterion for superalloy design
  • DOI:
    10.1557/s43579-022-00251-z
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Longsheng Feng;A. Egan;Fei-Fei Xue-Fei;E. Marquis;Michael J. Mills;Yunzhi Wang
  • 通讯作者:
    Longsheng Feng;A. Egan;Fei-Fei Xue-Fei;E. Marquis;Michael J. Mills;Yunzhi Wang
Local Phase Transformation Strengthening at Microtwin Boundaries in Nickel-Based Superalloys
  • DOI:
    10.1016/j.actamat.2022.118206
  • 发表时间:
    2022-08-06
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Egan, A. J.;Xue, F.;Mills, M. J.
  • 通讯作者:
    Mills, M. J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emmanuelle Marquis其他文献

Emmanuelle Marquis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emmanuelle Marquis', 18)}}的其他基金

Role of Diffusion-Induced Grain Boundary Migration in Alloy Oxidation
扩散引起的晶界迁移在合金氧化中的作用
  • 批准号:
    2236887
  • 财政年份:
    2023
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Standard Grant
Travel Support for student participation at the 2018 Electron Backscatter Diffraction Topical Conference
为学生参加 2018 年电子背散射衍射专题会议提供差旅支持
  • 批准号:
    1829336
  • 财政年份:
    2018
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Scanning Electron Microscope for Real-time Studies of Novel Materials Processes and Functionality
MRI:获取扫描电子显微镜以实时研究新型材料工艺和功能
  • 批准号:
    1625671
  • 财政年份:
    2016
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Standard Grant
I-Corps: Soft Analytic Imaging
I-Corps:软分析成像
  • 批准号:
    1506791
  • 财政年份:
    2014
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Standard Grant
CAREER: Solute Effects on the Oxidation Behavior of Ni Alloys
职业:溶质对镍合金氧化行为的影响
  • 批准号:
    1352157
  • 财政年份:
    2014
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Continuing Grant
EAGER - Nanoscale 3D Imaging of ice-embedded metallic structures
EAGER - 冰嵌入金属结构的纳米级 3D 成像
  • 批准号:
    1201436
  • 财政年份:
    2012
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
  • 批准号:
    2409552
  • 财政年份:
    2024
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
  • 批准号:
    2411603
  • 财政年份:
    2024
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
  • 批准号:
    2323458
  • 财政年份:
    2023
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
  • 批准号:
    2323470
  • 财政年份:
    2023
  • 资助金额:
    $ 34.32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了