Lipid-polymer membranes: understanding ion transport through hybrid materials at the nanoscale

脂质聚合物膜:了解纳米级混合材料中的离子传输

基本信息

项目摘要

Ions are small atomic or molecular species that carry a positive or negative charge. Many processes in nature, from the transmission of signals in brain cells to conversion of sunlight into energy by plants to the performance of batteries relies on efficient and controllable transport of ions from one place to another. In this project the PIs will develop a new class of materials that will yield improved methods to control and enhance ion transport. As the demands for efficient ion transport increase, materials with precisely tailored structures are needed to provide both pathways for charges to move as well as mechanical robustness. Polymers and phospholipids are two classes of materials which can self-assemble into structures with nanometer scale features, and in appropriate ratios their hybrids can generate novel nanostructures for ion transport. This project will underpin how nanostructures of hybrid materials and the size of the domains correlates with mechanical and transport properties. This innovative research project can generate new knowledge, resulting in the development of cost effective and benign approaches for the processing of nanostructured soft materials for many useful applications, including separations, water purification, and energy storage. The PIs will offer several educational activities. First, they will participate in a program called Polymers module for Middle-School Girls Learning About Materials (Mid-GLAM) summer camp. As part of this project, the PIs will prepare a day-long module, during which a full span of materials will be showcased. This will include demos in the PIs labs, giving students the opportunity to compare materials with different flow properties based on the underlying chemistry. The goal will be to teach, in a hands-on and engaging manner, how to engineer the properties of polymers which are used in everyday applications. This project will advance the fundamental understanding of self-assembly in block copolymer-phospholipid hybrid membranes and the corresponding impact on ion transport. While block copolymer and phospholipid self-assembly has received much attention individually, their hybrids can exhibit nanostructures and long-range domains which are not present in either of the two starting components. A key aim of this work is to understand how to harness the formation of stable, double gyroid morphologies to provide continuous pathways for ion transport. The hybrid materials will be investigated to deconvolute the roles of interfacial effects and intermolecular interactions. When confined to the nanoscale, ion mobilities can be greatly enhanced or suppressed which the PIs will probe through control of swelling, domain size, and interactions with the supporting substrate. The intermolecular interactions of ions with polymer will also be modulated through the charge density and species on the polymer backbone. Understanding what gives rise to large changes in diffusion under nanoconfined conditions is the second major aim. Finally, triggerable groups which respond to light and temperature will be incorporated into the block copolymer as a means to disassemble and interconvert between continuous and layered nanostructures to provide modulated transport. This research will provide fundamental insights into the self-assembly of complex soft materials, transport through nanostructured domains, and reversible structure formation of hybrid soft alloys. This work will be disseminated to undergraduate and graduate students in coursework including Biomolecular Materials and Kinetics in the Materials Science Department, where the self-assembly process and timescales will be discussed. The findings will also be disseminated both on campus and to the community through outreach projects including day camps for Girls Learning About Materials. Interest in STEM fields will be promoted to high school and middle-school girls, by introducing them to the exciting world of self-assembly and biological-synthetic hybrid materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
离子是携带正电荷或负电荷的小原子或分子物质。自然界中的许多过程,从脑细胞中的信号传输到植物将阳光转化为能量,再到电池的性能,都依赖于离子从一个地方到另一个地方的有效和可控的运输。在这个项目中,PI将开发一种新的材料,这种材料将产生改进的方法来控制和增强离子传输。随着对有效离子传输的需求增加,需要具有精确定制结构的材料来提供电荷移动的路径以及机械鲁棒性。聚合物和磷脂是两类可以自组装成具有纳米尺度特征的结构的材料,并且在适当的比例下,它们的杂化物可以产生用于离子传输的新型纳米结构。该项目将支持混合材料的纳米结构和域的大小如何与机械和传输特性相关。这个创新的研究项目可以产生新的知识,从而开发出具有成本效益和良性的方法来处理纳米结构软材料,用于许多有用的应用,包括分离,水净化和能量储存。PI将提供一些教育活动。首先,他们将参加一个名为“中学女生学习材料聚合物模块”(Mid-GLAM)夏令营的项目。作为该项目的一部分,PI将准备一个为期一天的模块,在此期间将展示整个材料。这将包括PI实验室的演示,让学生有机会根据基础化学比较具有不同流动特性的材料。我们的目标将是教,在一个动手和参与的方式,如何设计在日常应用中使用的聚合物的性能。本计画将增进对嵌段共聚物-磷脂杂化膜自组装的基本了解,以及对离子传输的影响。虽然嵌段共聚物和磷脂自组装分别受到了很大的关注,但它们的混合物可以表现出两种起始组分中不存在的纳米结构和长程结构域。这项工作的一个主要目的是了解如何利用稳定的双螺旋形态的形成,为离子传输提供连续的途径。杂化材料将被研究去卷积的界面效应和分子间相互作用的作用。当被限制在纳米级时,离子迁移率可以被极大地增强或抑制,PI将通过控制溶胀、域尺寸和与支撑衬底的相互作用来探测离子迁移率。离子与聚合物的分子间相互作用也将通过聚合物主链上的电荷密度和种类来调制。了解是什么导致了在纳米限制条件下扩散的巨大变化是第二个主要目标。最后,响应于光和温度的可降解基团将被引入嵌段共聚物中,作为在连续和分层纳米结构之间分解和相互转化的手段,以提供调制的传输。这项研究将为复杂软材料的自组装、通过纳米结构域的传输以及混合软合金的可逆结构形成提供基本见解。这项工作将传播给本科生和研究生的课程,包括生物分子材料和动力学在材料科学系,在那里的自组装过程和时间尺度将被讨论。调查结果还将通过外联项目,包括女孩学习材料日营,在校园和社区传播。通过向高中和初中女生介绍自组装和生物合成混合材料的精彩世界,提高她们对STEM领域的兴趣。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cooperative Self-Assembly of Lipid–Polymer Hybrids Stabilizing Highly Ordered Bicontinuous Cubic Phases in Air
脂质与聚合物杂化物的协同自组装稳定空气中高度有序的双连续立方相
  • DOI:
    10.1021/acs.macromol.3c00239
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Kang, Minjee;Go, Yoo Kyung;Porras-Gomez, Marilyn;Koulaxizis, Tzortzis;Steer, Dylan;Statt, Antonia;Leal, Cecilia
  • 通讯作者:
    Leal, Cecilia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Evans其他文献

Factor of two : halving the fuel consumption of new U.S. Automobiles by 2035
二分之一:到 2035 年将美国新车的燃料消耗减半
  • DOI:
    10.1007/978-1-4020-6979-6_4
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    L. Cheah;Christopher Evans;A. Bandivadekar;J. Heywood
  • 通讯作者:
    J. Heywood
Optimal Monetary Rules with Downward Nominal Wage Rigidity∗
名义工资刚性下降的最优货币规则*
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher Evans
  • 通讯作者:
    Christopher Evans
MP48-19 ONCOLOGICAL AND FUNCTIONAL OUTCOMES IN MINIMALLY INVASIVE APPROACH FOR KIDNEY CANCER WITH VENOUS THROMBUS: A MULTICENTRIC STUDY.
  • DOI:
    10.1016/j.juro.2018.02.1518
  • 发表时间:
    2018-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Giancarlo Marra;Michele Brattoli;Claudia Filippini;Estefania Linares Espinos;Juan Martinez Salamanca;Martin Sphan;Douglas S. Scherr;Francisco Delgado-Oliva;César David Vera-Donoso;Adam C. Lorentz;Master Viraj;James Mckiernan;John A. Libertino;William C. Huang;Christopher Evans;Umberto Capitanio;Francesco Montorsi;Georg Hutterer;Richard Zigeuner;Paolo Gontero
  • 通讯作者:
    Paolo Gontero
415 ANDROGRAPHOLIDE TARGETS AR PATHWAY IN CASTRATION-RESISTANT PROSTATE CANCER
  • DOI:
    10.1016/j.juro.2011.02.504
  • 发表时间:
    2011-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Chengfei Liu;Meng Sun;Wei Lou;Jaeyeon Chun;Nagalakshmi Nadiminty;Christopher Evans;Allen Gao
  • 通讯作者:
    Allen Gao
MP13-14 WHAT BENCHMARKS CAN WE EXPECT IN DETERMINING MARKERS OF QUALITY IN THE TREATMENT OF NON-MUSCLE INVASIVE BLADDER CANCER?
  • DOI:
    10.1016/j.juro.2016.02.2495
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stanley Yap;Francisco Chavez;Neil Pugashetti;Marc Dall'Era;Christopher Evans;Ralph deVereWhite
  • 通讯作者:
    Ralph deVereWhite

Christopher Evans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Evans', 18)}}的其他基金

Landscape Regeneration Solutions to the Interlinked Extinction and Climate Crises that support Sustainable Development
针对相互关联的灭绝和气候危机的景观再生解决方案,支持可持续发展
  • 批准号:
    NE/W004968/1
  • 财政年份:
    2022
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Research Grant
Greenhouse Gas Instrumentation System for Aquatic Ecosystems (GHG-Aqua)
水生生态系统温室气体仪表系统 (GHG-Aqua)
  • 批准号:
    NE/V01627X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Research Grant
Greenhouse Gas Removal by Accelerated Peat Formation
通过加速泥炭形成去除温室气体
  • 批准号:
    BB/V011561/1
  • 财政年份:
    2021
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Research Grant
Understanding the role of conserved dynamic covalent junctions on block copolymer and network self-assembly
了解保守动态共价连接对嵌段共聚物和网络自组装的作用
  • 批准号:
    2029928
  • 财政年份:
    2020
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Standard Grant
CAREER: Nanoscale Resolution of Interfacial Materials Physics in Dry, Ionic Polymers
职业:干燥离子聚合物中界面材料物理的纳米级分辨率
  • 批准号:
    1751291
  • 财政年份:
    2018
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Continuing Grant
I/UCRC FRP: Minimizing uncertainty in freeform optics metrology using CMMs
I/UCRC FRP:使用坐标测量机最大限度地减少自由曲面光学计量的不确定性
  • 批准号:
    1432990
  • 财政年份:
    2014
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Standard Grant
Catalytic Chemical Wear of Diamond Tools while Cutting Alloys
切削合金时金刚石工具的催化化学磨损
  • 批准号:
    1162209
  • 财政年份:
    2012
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Standard Grant
Acidity controls on organic matter cycling and nitrogen saturation in organic soils.
酸度控制有机土壤中的有机质循环和氮饱和度。
  • 批准号:
    NE/E011748/1
  • 财政年份:
    2007
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Research Grant
Acidity controls on organic matter cycling and nitrogen saturation in organic soils.
酸度控制有机土壤中的有机质循环和氮饱和度。
  • 批准号:
    NE/E011837/1
  • 财政年份:
    2007
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Research Grant

相似国自然基金

大面积polymer-NP-MOFs复合薄膜的构筑及光催化选择性加氢研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于非富勒烯聚合物太阳能电池的苯并三氮唑类二维共轭聚合物
  • 批准号:
    51673200
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
CNT网络/Polymer复合材料力学性能的多尺度数值模拟研究
  • 批准号:
    11602270
  • 批准年份:
    2016
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基于量子动力学RPMD的化学反应速率研究
  • 批准号:
    21503130
  • 批准年份:
    2015
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
高阻隔主动包装SiOx/Polymer复合薄膜的磁控共溅射制备及反应路径研究
  • 批准号:
    51302054
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
表面引发聚合反应对材料表面疏水性影响的计算机模拟研究
  • 批准号:
    21104025
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
不同拓扑结构的水溶性共轭聚合物分子刷的合成及生物应用研究
  • 批准号:
    51173080
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
水溶性含铱配合物的刚柔嵌段共轭聚合物的合成及其生物传感应用
  • 批准号:
    21104033
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于金纳米颗粒/Polymer复合结构的MEMS嵌入式高灵敏度力敏检测元件基础研究
  • 批准号:
    51105345
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
智能控温兼控释药多法治癌用磁性聚合物微球
  • 批准号:
    50702037
  • 批准年份:
    2007
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of screening-printed sweat sensor using lipid/polymer membranes
使用脂质/聚合物膜开发丝网印刷汗液传感器
  • 批准号:
    20K22510
  • 财政年份:
    2020
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Development of a microfluidic device for the time-dependency of taste interaction detection using lipid polymer membranes
使用脂质聚合物膜开发用于时间依赖性味觉相互作用检测的微流体装置
  • 批准号:
    20K04502
  • 财政年份:
    2020
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Statistical mechanics of polymer systems and lipid bilayer membranes
聚合物系统和脂质双层膜的统计力学
  • 批准号:
    250050-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical mechanics of polymer systems and lipid bilayer membranes
聚合物系统和脂质双层膜的统计力学
  • 批准号:
    250050-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical mechanics of polymer systems and lipid bilayer membranes
聚合物系统和脂质双层膜的统计力学
  • 批准号:
    250050-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical studies of lipid bilayer membranes and polymer systems
脂质双层膜和聚合物系统的理论研究
  • 批准号:
    5932-2005
  • 财政年份:
    2009
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical mechanics of polymer systems and lipid bilayer membranes
聚合物系统和脂质双层膜的统计力学
  • 批准号:
    250050-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical studies of lipid bilayer membranes and polymer systems
脂质双层膜和聚合物系统的理论研究
  • 批准号:
    5932-2005
  • 财政年份:
    2008
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical mechanics of polymer systems and lipid bilayer membranes
聚合物系统和脂质双层膜的统计力学
  • 批准号:
    250050-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical studies of lipid bilayer membranes and polymer systems
脂质双层膜和聚合物系统的理论研究
  • 批准号:
    5932-2005
  • 财政年份:
    2007
  • 资助金额:
    $ 69.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了