CAREER: Hessenberg Varieties, Symmetric Functions, and Combinatorial Representation Theory
职业:Hessenberg 簇、对称函数和组合表示论
基本信息
- 批准号:2237057
- 负责人:
- 金额:$ 46.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Research in algebraic combinatorics seeks to build connections between discrete structures and algebraic objects, with broad applications in mathematics and other sciences. This project develops tools to organize discrete data in a way that reflects key structural properties. These tools are applied to study solutions of complicated systems of polynomial equations and streamline computation in order to decipher patterns in otherwise complex data. The resulting insights yield new approaches to important unsolved problems in both geometry and combinatorics. The educational component of this project will train the next generation of scientists through a targeted mentoring program that includes research opportunities for traditionally underrepresented students. It also creates structured pathways for outreach to students in local schools.The research component of this project is concerned with the combinatorial and geometric structure of Hessenberg varieties. Hessenberg varieties are subvarieties of the flag variety whose cohomology rings encode rich combinatorial structure. Topological data obtained from these varieties will be used to make new in-roads toward open positivity conjectures in algebraic combinatorics and their extension to arbitrary Weyl groups. The geometry of Hessenberg varieties is completely understood in only a few cases. The PI will transform the traditional path of research in this area by studying families of Hessenberg varieties united by only a few essential properties, and prove the geometry of these varieties fluctuates in predictable ways as other inputs vary. This project also expands an existing undergraduate research program at Washington University in St. Louis to include students whose high school background does not prepare them to take advanced courses quickly. Funds will be used to establish a new math outreach seminar.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数组合学的研究旨在建立离散结构和代数对象之间的联系,在数学和其他科学中具有广泛的应用。该项目开发工具,以反映关键结构特性的方式组织离散数据。这些工具被应用于研究复杂的多项式方程组和流线型计算系统的解决方案,以便破译其他复杂数据中的模式。由此产生的见解产生新的方法来解决重要的几何和组合学未解决的问题。该项目的教育部分将通过有针对性的指导计划,包括为传统上代表性不足的学生提供研究机会,培养下一代科学家。该项目的研究内容涉及黑森贝格品种的组合和几何结构。Hessenberg簇是旗簇的子簇,其上同调环编码丰富的组合结构。从这些品种获得的拓扑数据将被用来使新的道路对开放的正性代数组合学及其扩展到任意Weyl群。只有在少数情况下才能完全理解赫森堡簇的几何。PI将通过研究仅由几个基本属性联合的Hessenberg品种家族来改变这一领域的传统研究路径,并证明这些品种的几何形状随着其他输入的变化而以可预测的方式波动。该项目还扩大了圣路易斯华盛顿大学现有的本科生研究计划,以包括那些高中背景不适合快速学习高级课程的学生。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martha Precup其他文献
The Connectedness of Hessenberg Varieties
海森堡品种的关联性
- DOI:
10.1016/j.jalgebra.2015.02.034 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Martha Precup - 通讯作者:
Martha Precup
The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture
阿贝尔赫森伯格簇的上同调和斯坦利-斯坦布里奇猜想
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. Harada;Martha Precup - 通讯作者:
Martha Precup
THE BETTI NUMBERS OF REGULAR HESSENBERG VARIETIES ARE PALINDROMIC
- DOI:
10.1007/s00031-017-9442-9 - 发表时间:
2016-03 - 期刊:
- 影响因子:0.7
- 作者:
Martha Precup - 通讯作者:
Martha Precup
Affine pavings of Hessenberg varieties for semisimple groups
半单群的 Hessenberg 簇的仿射铺路
- DOI:
10.1007/s00029-012-0109-z - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Martha Precup - 通讯作者:
Martha Precup
Springer fibers and Schubert points
施普林格纤维和舒伯特点
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Martha Precup;Julianna Tymoczko - 通讯作者:
Julianna Tymoczko
Martha Precup的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martha Precup', 18)}}的其他基金
Conference: 2023 Graduate Student Combinatorics Conference
会议:2023年研究生组合学会议
- 批准号:
2245927 - 财政年份:2023
- 资助金额:
$ 46.9万 - 项目类别:
Standard Grant
Applications of Lie Theory: Combinatorial Algebraic Geometry and Symmetric Functions
李理论的应用:组合代数几何和对称函数
- 批准号:
1954001 - 财政年份:2020
- 资助金额:
$ 46.9万 - 项目类别:
Standard Grant
相似国自然基金
正则半单Hessenberg varieties上的代数拓扑
- 批准号:11901218
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Combinatoire et géométrie des variétés de Hessenberg
Hessenberg 品种组合与几何
- 批准号:
561709-2021 - 财政年份:2021
- 资助金额:
$ 46.9万 - 项目类别:
University Undergraduate Student Research Awards
The family of Hessenberg varieties and integrable systems
Hessenberg 品种家族和可积系统
- 批准号:
18K13413 - 财政年份:2018
- 资助金额:
$ 46.9万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Representations of Reductive Groups and Étale Hessenberg Varieties
还原群和 ätale Hessenberg 簇的表示
- 批准号:
1751940 - 财政年份:2017
- 资助金额:
$ 46.9万 - 项目类别:
Standard Grant
Representations of Reductive Groups and Étale Hessenberg Varieties
还原群和 ätale Hessenberg 簇的表示
- 批准号:
1601282 - 财政年份:2016
- 资助金额:
$ 46.9万 - 项目类别:
Standard Grant
Topology of Hessenberg varieties and representations of symmetric groups
Hessenberg簇的拓扑和对称群的表示
- 批准号:
15K17544 - 财政年份:2015
- 资助金额:
$ 46.9万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Equivariant Schubert calculus of regular nilpotent Hessenberg varieties
正则幂零 Hessenberg 簇的等变舒伯特微积分
- 批准号:
400430-2010 - 财政年份:2010
- 资助金额:
$ 46.9万 - 项目类别:
University Undergraduate Student Research Awards
T-fixed points of Hessenberg varieties
Hessenberg 品种的 T 不动点
- 批准号:
383746-2009 - 财政年份:2009
- 资助金额:
$ 46.9万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




