CAREER: Bioinspired optical sniffer based on microtoroid resonators and science and technology convergence
职业:基于微环形谐振器和科技融合的仿生光学嗅探器
基本信息
- 批准号:2237077
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-15 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The goal of this Faculty Early Career Development (CAREER) project is to create an optical “nose” as sensitive as a bloodhound’s and as selective as an insect’s. Animals' noses can distinguish among many thousands of different chemicals. Smell plays a critical role in chemical communication, sensing danger, and navigation. Thus, a biomimetic sensor based on an olfactory system would have tremendous benefits. This project will combine optical sensing technology that can detect changes in how light interacts with molecules with engineered olfactory receptors. Pattern recognition will be accomplished using artificial intelligence. It is anticipated that these advances will enable the detection of extremely low concentrations of biological and chemical targets relevant to a diverse range of diseases, environmentally important chemicals, and threats. In parallel, a do-it-yourself (DIY) refractometer kit will be developed to introduce middle and high-school students to optical engineering concepts. Lessons involving optics and food and water quality testing with refractometers will be developed to build a sustained STEM pipeline and to democratize science for a better world.A biomimetic sensor based on an olfactory system could automate, with greater sensitivity, tasks that can currently only be performed by humans and animals. Existing bioinspired electronic (e-) noses have not been widely adopted due to poor stability, slow response speed, and selectivity artifacts. In the proposed work, the biochemical sensing field will be advanced by creating an optical nose with improved sensitivity and selectivity by incorporating computationally designed olfactory receptors, which are superior to existing e-nose polymer coatings, onto whispering gallery mode (WGM) microtoroid optical resonators. WGM resonators have previously been widely used for biological and chemical sensing because of their high sensitivity compared to electronic sensors, but WGM resonators have never been used in concert with natural olfactory receptors for VOC detection due to the challenge of designing, producing, binding, and maintaining the functionality of these receptors. Here the field of WGM biochemical sensing will be advanced through a convergence of computational molecular design, synthetic biology, specialized surface chemistry approaches and photonic advances for multiplexing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个教师早期职业发展(Career)项目的目标是创造一个像猎犬一样敏感、像昆虫一样有选择性的光学“鼻子”。动物的鼻子可以区分成千上万种不同的化学物质。嗅觉在化学交流、感知危险和导航中起着至关重要的作用。因此,基于嗅觉系统的仿生传感器将有巨大的好处。该项目将结合光学传感技术,该技术可以检测光与分子相互作用的变化与工程嗅觉受体。模式识别将使用人工智能来完成。预计这些进展将能够探测到与各种疾病、对环境重要的化学品和威胁有关的极低浓度的生物和化学目标。与此同时,将开发一种DIY折光计套件,向中学生和高中生介绍光学工程概念。将开发涉及光学、食品和水质测试的课程,以建立一个持续的STEM管道,并使科学民主化,以创造一个更美好的世界。基于嗅觉系统的仿生传感器可以以更高的灵敏度自动完成目前只能由人类和动物完成的任务。现有的仿生电子鼻由于稳定性差、响应速度慢、选择性伪影等原因,尚未得到广泛应用。在提出的工作中,通过将计算设计的嗅觉受体(优于现有的电子鼻聚合物涂层)结合到低语廊模式(WGM)微环形光学谐振器上,创造出具有更高灵敏度和选择性的光学鼻子,将推动生化传感领域的发展。由于与电子传感器相比,WGM谐振器具有较高的灵敏度,因此以前已广泛用于生物和化学传感,但由于这些受体的设计、生产、结合和维持功能方面的挑战,WGM谐振器从未与天然嗅觉受体一起用于VOC检测。在这里,WGM生物化学传感领域将通过计算分子设计、合成生物学、专门的表面化学方法和多路复用光子技术的融合而得到发展。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tsu-Te Su其他文献
Tsu-Te Su的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tsu-Te Su', 18)}}的其他基金
EAGER: High precision molecular spectroscopy and detection using microtoroid optical resonators
EAGER:使用微环形光学谐振器进行高精度分子光谱和检测
- 批准号:
1842045 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Bioinspired 2D nanocatalysts for inorganic nitrogen cycle
用于无机氮循环的仿生二维纳米催化剂
- 批准号:
DE240101045 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Early Career Researcher Award
Maneuvering Bioinspired Soft Microrobots in Anisotropic Complex Fluids
在各向异性复杂流体中操纵仿生软微型机器人
- 批准号:
2323917 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Bioinspired Multispectral Imaging Technology for Intraoperative Cancer Detection
NSF 融合加速器轨道 M:用于术中癌症检测的仿生多光谱成像技术
- 批准号:
2344460 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
ERI: Free surface and flexibility effects in partially-submerged bioinspired propulsion
ERI:部分浸没仿生推进中的自由表面和灵活性效应
- 批准号:
2347477 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Bioinspired photoreceptor and smart neural mimicking technologies
仿生感光器和智能神经模仿技术
- 批准号:
DP240100145 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
CAREER: A Novel Electrically-assisted Multimaterial Printing Approach for Scalable Additive Manufacturing of Bioinspired Heterogeneous Materials Architectures
职业:一种新型电辅助多材料打印方法,用于仿生异质材料架构的可扩展增材制造
- 批准号:
2338752 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Bioinspired Membranes for Water Purification
用于水净化的仿生膜
- 批准号:
EP/Y001443/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Bioinspired Multiplexed Ultrasensitive Biosensing
仿生多重超灵敏生物传感
- 批准号:
EP/Z000130/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Bioinspired Ceramifiable Fire-Retardant Composite Coatings
仿生陶瓷阻燃复合涂料
- 批准号:
DP240102628 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Discovery Projects
Bioinspired Design: Unforeseen Pathways to impact arising from AHRC funded Bioinspired Textiles Research
仿生设计:AHRC 资助的仿生纺织品研究产生不可预见的影响途径
- 批准号:
AH/X004473/1 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Research Grant














{{item.name}}会员




