CAREER: Resource Efficient Systems for Machine Learning on Structured Data

职业:结构化数据机器学习的资源高效系统

基本信息

  • 批准号:
    2237306
  • 负责人:
  • 金额:
    $ 67.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Many scientific and enterprise datasets include relationships among data items, which can be represented as graphs. Applying machine learning methods on such graph datasets can yield benefits across several domains, including social networks, drug discovery, and search engines. However, existing software for applying machine learning methods on large graph datasets is slow, complex, and expensive. This NSF CAREER proposal aims to address these challenges by developing software that will make it faster, easier, and less expensive to analyze large graph datasets. The proposed research includes three thrusts that focus on different stages of machine learning workflows. The first thrust aims to develop software that will make it faster and easier to train machine learning models on large graphs using many machines. The second thrust focuses on how to efficiently handle scenarios where graphs are updated with additional data. The third thrust considers how to make prediction less expensive when using machine learning models trained on large graph datasets. The broader impacts of the proposed research include improved analysis capabilities for data scientists working in many areas. Furthermore, all software developed as a part of this project will be made freely available to the wider community and will include documentation and tutorials to help users from computer science and other academic disciplines to get started. Additionally, the proposal plans to develop a new undergraduate course that teaches students how to use software frameworks to process large datasets. The assignments in the course will use software tools developed as a part of this project. The project also includes plans to broaden participation in computer science by organizing a yearly workshop that promotes research opportunities for undergraduate students from underrepresented groups, as well as discussion sessions that can help students who are getting started with research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多科学和企业数据集包括数据项之间的关系,这些关系可以表示为图形。在这些图形数据集上应用机器学习方法可以在多个领域产生效益,包括社交网络、药物发现和搜索引擎。然而,现有的在大型图数据集上应用机器学习方法的软件是缓慢、复杂和昂贵的。NSF CAREER提案旨在通过开发软件来解决这些挑战,这些软件将使分析大型图形数据集更快,更容易,更便宜。拟议的研究包括三个重点,重点关注机器学习工作流程的不同阶段。第一个目标是开发软件,使其更快,更容易地使用许多机器在大型图上训练机器学习模型。第二个重点是如何有效地处理图表使用额外数据更新的场景。第三个重点是考虑如何在使用在大型图数据集上训练的机器学习模型时降低预测成本。拟议研究的更广泛影响包括提高在许多领域工作的数据科学家的分析能力。此外,作为该项目一部分开发的所有软件将免费提供给更广泛的社区,并将包括文档和教程,以帮助计算机科学和其他学科的用户入门。此外,该提案计划开发一门新的本科课程,教授学生如何使用软件框架来处理大型数据集。课程中的作业将使用作为本项目一部分开发的软件工具。该项目还包括通过组织年度研讨会来扩大计算机科学参与度的计划,该研讨会为来自代表性不足群体的本科生提供研究机会,以及可以帮助开始研究的学生的讨论会。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shivaram Venkataraman其他文献

CHAI: Clustered Head Attention for Efficient LLM Inference
CHAI:用于高效 LLM 推理的集群头注意力
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saurabh Agarwal;Bilge Acun;Basil Homer;Mostafa Elhoushi;Yejin Lee;Shivaram Venkataraman;Dimitris Papailiopoulos;Carole
  • 通讯作者:
    Carole

Shivaram Venkataraman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shivaram Venkataraman', 18)}}的其他基金

Collaborative Research: Frameworks: Diamond: Democratizing Large Neural Network Model Training for Science
合作研究:框架:钻石:科学大型神经网络模型训练的民主化
  • 批准号:
    2311767
  • 财政年份:
    2023
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Standard Grant
Collaborative Research: CSR: Medium: Fortuna: Characterizing and Harnessing Performance Variability in Accelerator-rich Clusters
合作研究:CSR:Medium:Fortuna:表征和利用富含加速器的集群中的性能变异性
  • 批准号:
    2312688
  • 财政年份:
    2023
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Continuing Grant
III: Small: A New Machine Learning Approach for Improved Entity Identification
III:小:改进实体识别的新机器学习方法
  • 批准号:
    1815538
  • 财政年份:
    2018
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: A Networking and Learning Co-Design Framework for Data-Efficient Resource Management
职业:用于数据高效资源管理的网络和学习协同设计框架
  • 批准号:
    2239458
  • 财政年份:
    2023
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Continuing Grant
CAREER: Variational Inference for Resource-Efficient Learning
职业:资源高效学习的变分推理
  • 批准号:
    2047418
  • 财政年份:
    2021
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Continuing Grant
CAREER: Foundations of Resource Efficient Machine Learning
职业:资源高效机器学习的基础
  • 批准号:
    2046816
  • 财政年份:
    2021
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Continuing Grant
CAREER: A Unified Framework for Designing Efficient Resource-Oblivious Parallel Algorithms
职业:设计高效的资源无关并行算法的统一框架
  • 批准号:
    1553510
  • 财政年份:
    2016
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Continuing Grant
CAREER: Flexible Resource Allocation and Efficient Coding in Human Vision
职业:人类视觉中的灵活资源分配和高效编码
  • 批准号:
    0953730
  • 财政年份:
    2010
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Resource Allocation and Control in Mobile Wireless Networks with Multimedia Services
职业:具有多媒体服务的移动无线网络中的高效资源分配和控制
  • 批准号:
    0237331
  • 财政年份:
    2003
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Standard Grant
CAREER: Efficient Resource Management and Multi-Access Protocols for Bursty Traffic Over Wireless Networks: A Cross-Layer Design Approach
职业:针对无线网络突发流量的高效资源管理和多接入协议:跨层设计方法
  • 批准号:
    0238550
  • 财政年份:
    2003
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Standard Grant
CAREER: Designing Efficient Resource Management Schemes to Support Integrated Services in Mobile Computing Systems
职业:设计高效的资源管理方案以支持移动计算系统中的集成服务
  • 批准号:
    0092770
  • 财政年份:
    2001
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Continuing Grant
CAREER: The Design of Resource-Efficient Communications Systems by Combining Decision Feedback with Error-Control Coding
职业:通过将决策反馈与错误控制编码相结合来设计资源高效的通信系统
  • 批准号:
    0093114
  • 财政年份:
    2001
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Distributed Resource Allocation Algorithms, with Application to Wireless Communications
职业:高效的分布式资源分配算法,及其在无线通信中的应用
  • 批准号:
    9875221
  • 财政年份:
    1999
  • 资助金额:
    $ 67.61万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了