CAREER: Variational Inference for Resource-Efficient Learning

职业:资源高效学习的变分推理

基本信息

  • 批准号:
    2047418
  • 负责人:
  • 金额:
    $ 44.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

The power of Deep Learning (DL) comes with enormous energy and storage costs due to massive data needs and parameter-rich models. For example, recent models for natural language generation contain more than a hundred billion parameters and require huge amounts of training data. Training such a model can entail nearly five times the lifetime carbon dioxide emissions of the average American car. This project develops a holistic approach to resource-efficient DL based on a common set of methodologies: DL models and algorithms are viewed through the lens of information theory, making it possible to formally quantify and minimize the required resources. Outcomes of this project include new methods for the compression of both models (neural networks) and data (images and video), as well as new training algorithms for DL that reduce data requirements and improve runtime efficiency. These research activities will also inform summer teaching activities for under-represented students, lead to new open-source software for resource-efficient machine learning, as well as workshops and symposia on neural compression and statistical machine learning. In more detail, the project approaches resource-efficient machine learning from the perspective of variational inference (VI) and contains three thrusts that focus on different inefficiencies: (A) bandwidth inefficiency: a model's inefficient representation of data or parameters, (B) data inefficiency: a model's extensive need for training data, and (C) runtime inefficiency: a learning or inference algorithm's inability to produce desired answers within a given computational time budget. Thrust A draws on the connection between VI and rate-distortion theory to derive new neural compression algorithms with improved compression performance. Thrust B designs informative priors for effective learning with limited data in non-stationary environments. Finally, thrust C develops highly scalable training algorithms for Bayesian neural networks that hybridize Markov Chain Monte Carlo and VI, trading-off precision for convergence speed. The project contains applications from the domains of image and video compression as well as climate science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习(DL)的强大功能伴随着巨大的能量和存储成本,因为它需要大量的数据和丰富的参数模型。例如,最近的自然语言生成模型包含超过1000亿个参数,需要大量的训练数据。训练这样一个模型可能需要将近五倍于美国汽车平均寿命的二氧化碳排放量。该项目开发了一个整体的方法,以资源有效的DL的基础上,一套通用的方法:DL模型和算法被视为通过信息论的透镜,使之有可能正式量化和最小化所需的资源。该项目的成果包括压缩模型(神经网络)和数据(图像和视频)的新方法,以及用于DL的新训练算法,这些算法降低了数据需求并提高了运行时效率。这些研究活动还将为代表性不足的学生的夏季教学活动提供信息,为资源节约型机器学习提供新的开源软件,以及关于神经压缩和统计机器学习的研讨会和研讨会。更详细地说,该项目从变分推理(VI)的角度来研究资源高效的机器学习,并包含三个重点,重点是不同的效率低下:(A)带宽效率低下:模型对数据或参数的低效表示,(B)数据效率低下:模型对训练数据的广泛需求,以及(C)运行时效率低下:学习或推理算法在给定的计算时间预算内无法产生所需的答案。推力A利用VI和率失真理论之间的联系来推导具有改进的压缩性能的新的神经压缩算法。推力B设计了信息先验,用于在非平稳环境中利用有限数据进行有效学习。最后,thrust C为贝叶斯神经网络开发了高度可扩展的训练算法,该算法混合了Markov Chain Monte Carlo和VI,权衡了收敛速度的精度。该项目包含图像和视频压缩以及气候科学领域的应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Supervised Compression for Resource- constrained Edge Computing Systems
资源受限边缘计算系统的监督压缩
Neural Transformation Learning for Deep Anomaly Detection Beyond Images
  • DOI:
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chen Qiu;Timo Pfrommer;M. Kloft;S. Mandt;Maja R. Rudolph
  • 通讯作者:
    Chen Qiu;Timo Pfrommer;M. Kloft;S. Mandt;Maja R. Rudolph
Towards Empirical Sandwich Bounds on the Rate-Distortion Function
  • DOI:
  • 发表时间:
    2021-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yibo Yang;S. Mandt
  • 通讯作者:
    Yibo Yang;S. Mandt
Probabilistic Querying of Continuous-Time Event Sequences
连续时间事件序列的概率查询
Structured Stochastic Gradient MCMC
  • DOI:
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antonios Alexos;Alex Boyd;S. Mandt
  • 通讯作者:
    Antonios Alexos;Alex Boyd;S. Mandt
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephan Mandt其他文献

Understanding and Visualizing Droplet Distributions in Simulations of Shallow Clouds
理解和可视化浅层云模拟中的液滴分布
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Justus C. Will;A. M. Jenney;Kara D. Lamb;Michael S. Pritchard;Colleen Kaul;Po;Kyle Pressel;Jacob Shpund;M. Lier;Stephan Mandt
  • 通讯作者:
    Stephan Mandt
Preserving Identity with Variational Score for General-purpose 3D Editing
通过通用 3D 编辑的变分保留同一性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Duong H. Le;Tuan Pham;Aniruddha Kembhavi;Stephan Mandt;Wei;Jiasen Lu
  • 通讯作者:
    Jiasen Lu
HANNA: hard-constraint neural network for consistent activity coefficient prediction
汉纳:用于一致活度系数预测的硬约束神经网络
  • DOI:
    10.1039/d4sc05115g
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Thomas Specht;Mayank Nagda;Sophie Fellenz;Stephan Mandt;Hans Hasse;Fabian Jirasek
  • 通讯作者:
    Fabian Jirasek
Advancing thermodynamic group-contribution methods by machine learning: UNIFAC 2.0
通过机器学习推进热力学基团贡献法:UNIFAC 2.0
  • DOI:
    10.1016/j.cej.2024.158667
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Nicolas Hayer;Thorsten Wendel;Stephan Mandt;Hans Hasse;Fabian Jirasek
  • 通讯作者:
    Fabian Jirasek
JANET: Joint Adaptive predictioN-region Estimation for Time-series
  • DOI:
    10.1007/s10994-025-06812-2
  • 发表时间:
    2025-06-23
  • 期刊:
  • 影响因子:
    2.900
  • 作者:
    Eshant English;Eliot Wong-Toi;Matteo Fontana;Stephan Mandt;Padhraic Smyth;Christoph Lippert
  • 通讯作者:
    Christoph Lippert

Stephan Mandt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephan Mandt', 18)}}的其他基金

RI: Small: Deep Variational Data Compression
RI:小型:深度变分数据压缩
  • 批准号:
    2007719
  • 财政年份:
    2020
  • 资助金额:
    $ 44.65万
  • 项目类别:
    Standard Grant

相似海外基金

Variational Inference for Intractable and Misspecified State Space Models
棘手且错误指定的状态空间模型的变分推理
  • 批准号:
    DE230100029
  • 财政年份:
    2023
  • 资助金额:
    $ 44.65万
  • 项目类别:
    Discovery Early Career Researcher Award
CAREER: Statistical Inference in High Dimensions using Variational Approximations
职业:使用变分近似进行高维统计推断
  • 批准号:
    2239234
  • 财政年份:
    2023
  • 资助金额:
    $ 44.65万
  • 项目类别:
    Continuing Grant
Mean Field Asymptotics in Statistical Inference: Variational Approach, Multiple Testing, and Predictive Inference
统计推断中的平均场渐进:变分方法、多重测试和预测推断
  • 批准号:
    2210827
  • 财政年份:
    2022
  • 资助金额:
    $ 44.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Theoretical and Algorithmic Foundations of Variational Bayesian Inference
合作研究:变分贝叶斯推理的理论和算法基础
  • 批准号:
    2210717
  • 财政年份:
    2022
  • 资助金额:
    $ 44.65万
  • 项目类别:
    Standard Grant
Energetic Variational Inference: Foundations, Algorithms, and Applications
能量变分推理:基础、算法和应用
  • 批准号:
    2153029
  • 财政年份:
    2022
  • 资助金额:
    $ 44.65万
  • 项目类别:
    Continuing Grant
Collaborative Research: Theoretical and Algorithmic Foundations of Variational Bayesian Inference
合作研究:变分贝叶斯推理的理论和算法基础
  • 批准号:
    2210689
  • 财政年份:
    2022
  • 资助金额:
    $ 44.65万
  • 项目类别:
    Standard Grant
Introducing Numerical Integration-based Variational Approximations for Scalable Inference
引入基于数值积分的变分近似以进行可扩展推理
  • 批准号:
    547300-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 44.65万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
CAREER: Automatic Variational Inference
职业:自动变分推理
  • 批准号:
    2045900
  • 财政年份:
    2021
  • 资助金额:
    $ 44.65万
  • 项目类别:
    Continuing Grant
Variational Inference Sigma Point Filters for High-Dimensional Data
高维数据的变分推理西格玛点过滤器
  • 批准号:
    551089-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 44.65万
  • 项目类别:
    University Undergraduate Student Research Awards
Introducing Numerical Integration-based Variational Approximations for Scalable Inference
引入基于数值积分的变分近似以进行可扩展推理
  • 批准号:
    547300-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 44.65万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了