CAREER: Tuning Interfacial Ion Assembly to Engineer Electrochemical Reactions for a Sustainable Future
职业:调整界面离子组装来设计电化学反应,实现可持续的未来
基本信息
- 批准号:2237311
- 负责人:
- 金额:$ 62.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-15 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Electrochemical devices play a critical role in lowering carbon emissions in the energy and chemical sectors. These devices are typically composed of two electrodes joined by an electrolyte. While significant research has focused on the effect and evolution of electrodes during device operation, a detailed understanding of the role of electrolytes remains unresolved. Carbon dioxide (CO2) reduction reactions are energy-intensive and must compete with undesirable parasitic reactions which reduce both energy and carbon efficiency. There is a pressing need for new ways to tune electrolytes for the selective conversion of CO2 to carbon monoxide (CO), a key specialty chemical that can be used to make a wide range of chemical products. This project aims to explore how ion self-assembly in electrolytes at interfaces could revolutionize the performance of CO2 electrocatalysis into chemical feedstocks to mitigate the carbon footprint of chemical production. The project addresses how the self-assembly of organic ions promotes electrocatalytic reactions and connects these insights to reaction mechanisms and interfacial properties. This research will provide the fundamental basis for molecular level design of electrolytes that will advance technologies needed to address key sustainability challenges, such as CO2 recycling. Further, this project aims to catalyze growth of a diverse domestic STEM workforce by launching educational programs, including an Electrocatalysis Workshop for high school teachers and a public Water Splitting Challenge. Educational activities aim to foster an inclusive workforce in electrochemistry, with an emphasis on including participants from underrepresented communities.The objective of this project is to understand how collective ion assembly influences electrochemical properties and electron transfer at interfaces. CO2 reduction in ionic liquid electrolytes will be used as a model system, since ionic liquids provide opportunities to tune interfacial properties and catalytic reactivity via molecular assembly. The driving hypothesis is that electrocatalytic reactivity is dictated by electric field strengths immediately adjacent to electrode surfaces in a region where ions assemble, called the electric double layer. Further, this project aims to study how electric field strengths can be enhanced by modulating collective ion assembly, which will accelerate reactions involving polar intermediates, such as CO2 reduction. The key objectives are: (1) understand how collective ion assembly influences CO2 reduction, (2) reveal how ion assembly governs electrochemical properties of interfaces, and (3) study how ion aggregation can confine co-ions at interfaces to tune reactivity. The research will bridge catalysis science with a unique set of surface forces and spectroscopy tools to determine how structural, chemical, and electrochemical properties intersect to govern electrocatalytic reactions. By systematically studying how ion molecular structures influence assembly and electrochemical reactivity, this project promises to develop mechanistic insights into how interfacial microenvironments can be influenced at the molecular level to address growing challenges in sustainable energy and chemical manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电化学设备在降低能源和化工行业的碳排放方面发挥着关键作用。这些装置通常由通过电解质连接的两个电极组成。虽然重要的研究集中在设备操作期间电极的作用和演变上,但对电解质作用的详细理解仍未得到解决。二氧化碳(CO2)还原反应是能量密集型的,并且必须与降低能量和碳效率的不期望的寄生反应竞争。迫切需要新的方法来调整电解质,以将CO2选择性转化为一氧化碳(CO),这是一种可用于制造各种化学产品的关键特种化学品。该项目旨在探索界面处电解质中的离子自组装如何彻底改变CO2电催化转化为化学原料的性能,以减轻化学生产的碳足迹。该项目解决了有机离子的自组装如何促进电催化反应,并将这些见解与反应机制和界面特性联系起来。这项研究将为电解质的分子水平设计提供基础,从而推进解决关键可持续性挑战所需的技术,如二氧化碳回收。此外,该项目旨在通过启动教育计划,包括为高中教师举办的电催化研讨会和公共水分解挑战赛,促进多元化的国内STEM劳动力的增长。教育活动旨在培养电化学领域的包容性劳动力,重点是包括来自代表性不足的社区的参与者。该项目的目标是了解集体离子组装如何影响界面处的电化学性质和电子转移。离子液体电解质中的CO2还原将被用作模型系统,因为离子液体提供了通过分子组装来调节界面性质和催化反应性的机会。驱动假设是,电催化反应性由紧邻电极表面的离子聚集区域(称为双电层)中的电场强度决定。此外,该项目旨在研究如何通过调节集体离子组装来增强电场强度,这将加速涉及极性中间体的反应,如CO2还原。主要目标是:(1)了解集体离子组装如何影响CO2还原,(2)揭示离子组装如何控制界面的电化学性质,(3)研究离子聚集如何将共离子限制在界面以调节反应性。该研究将用一套独特的表面力和光谱学工具来连接催化科学,以确定结构,化学和电化学特性如何交叉来管理电催化反应。通过系统地研究离子分子结构如何影响组装和电化学反应性,该项目承诺开发如何在分子水平上影响界面微环境的机制见解,以应对可持续能源和化学品制造中日益增长的挑战。该奖项反映了NSF的法定使命,并通过利用基金会的智力价值和更广泛的影响进行评估,被认为值得支持审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Linking Electric Double Layer Formation to Electrocatalytic Activity
- DOI:10.1021/acscatal.3c04255
- 发表时间:2023-12
- 期刊:
- 影响因子:12.9
- 作者:Matthew A. Gebbie;Beichen Liu;Wenxiao Guo;Seth R. Anderson;Samuel G. Johnstone
- 通讯作者:Matthew A. Gebbie;Beichen Liu;Wenxiao Guo;Seth R. Anderson;Samuel G. Johnstone
Exploring how cation entropy influences electric double layer formation and electrochemical reactivity
- DOI:10.1039/d3sm01302b
- 发表时间:2023-12-01
- 期刊:
- 影响因子:3.4
- 作者:Liu,Beichen;Guo,Wenxiao;Gebbie,Matthew A.
- 通讯作者:Gebbie,Matthew A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Gebbie其他文献
Matthew Gebbie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
- 批准号:
2887634 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Studentship
CAS-SC: Tuning Hydrocarbon Products from Temperature-Gradient Thermolysis of Polyolefins and the Subsequent Upcycling to Functional Chemicals
CAS-SC:调整聚烯烃温度梯度热解的碳氢化合物产品以及随后升级为功能化学品
- 批准号:
2411680 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Standard Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
- 批准号:
2402542 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Standard Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tuning Large language models to read biological literature
调整大型语言模型以阅读生物文献
- 批准号:
BB/Y514032/1 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Research Grant
Tuning near-infrared photosynthesis
调节近红外光合作用
- 批准号:
BB/X015858/1 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Research Grant
Tuning near-infrared photosynthesis
调节近红外光合作用
- 批准号:
BB/X015955/1 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Research Grant
Tuning catalyst reaction environments towards photoreforming of wastewater
调整催化剂反应环境以实现废水的光重整
- 批准号:
DP240100687 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Discovery Projects
Adaptive optimization: parameter-free self-tuning algorithms beyond smoothness and convexity
自适应优化:超越平滑性和凸性的无参数自调整算法
- 批准号:
24K20737 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Tuning into plant development to improve the sustainability of arable farming
调整植物开发以提高耕作的可持续性
- 批准号:
MR/Y011708/1 - 财政年份:2024
- 资助金额:
$ 62.61万 - 项目类别:
Fellowship