CAREER: Scalable Spatial Data Science on User-generated Data
职业:基于用户生成数据的可扩展空间数据科学
基本信息
- 批准号:2237348
- 负责人:
- 金额:$ 53.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nowadays, hundreds of millions of human users use the world wide web every day. These users generate tremendous amounts of data related to all aspects of life and contain a lot of information about local societies, human activities, and social behavior. By nature, such human-generated data have a spatial aspect, as the geographic location is inherent in many human activities. This makes such data a rich and up-to-date source for social scientists to study different aspects of modern societies to improve people’s life. However, the excessive amount of such data makes it computationally challenging to process complex analyses and extract meaningful insights at a large scale. The project innovates new technology to analyze spatial aspects of user-generated data at a large scale.This project innovates novel scalable data management techniques, especially query processing techniques, to support spatial data science on large user-generated datasets. The project supports two families of queries that are widely used for spatial analysis of user-generated data: spatial estimation queries and spatial grouping queries. The proposed research on spatial estimation includes learning-assisted modules that incorporate machine learning models to improve spatial scalability and accuracy. The proposed research on spatial grouping scales up the grouping of various spatial data types, including points, lines, and polygons, to provide a variety of building blocks that support various applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
如今,每天都有数以亿计的人类用户使用万维网。这些用户产生了大量与生活各个方面相关的数据,并包含了大量关于当地社会、人类活动和社会行为的信息。从本质上讲,这种人类生成的数据具有空间方面,因为地理位置是许多人类活动所固有的。这使得这些数据成为社会科学家研究现代社会不同方面以改善人们生活的丰富和最新来源。然而,过多的此类数据使得处理复杂的分析和大规模提取有意义的见解在计算上具有挑战性。该项目创新了大规模分析用户生成数据的空间方面的新技术。该项目创新了新颖的可扩展数据管理技术,特别是查询处理技术,以支持大型用户生成数据集的空间数据科学。该项目支持广泛用于用户生成数据的空间分析的两类查询:空间估计查询和空间分组查询。拟议的空间估计研究包括学习辅助模块,这些模块结合了机器学习模型,以提高空间可扩展性和准确性。空间分组的拟议研究扩大了各种空间数据类型的分组,包括点,线和多边形,以提供支持各种应用程序的各种构建块。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EMP: Max-P Regionalization with Enriched Constraints
EMP:具有丰富约束的 Max-P 区域化
- DOI:10.1109/icde53745.2022.00189
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kang, Yunfan;Magdy, Amr
- 通讯作者:Magdy, Amr
DDCEL: Efficient Distributed Doubly Connected Edge List for Large Spatial Networks
- DOI:10.1109/mdm58254.2023.00029
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Laila Abdelhafeez;A. Magdy;V. Tsotras
- 通讯作者:Laila Abdelhafeez;A. Magdy;V. Tsotras
PAGE: Parallel Scalable Regionalization Framework
- DOI:10.1145/3611011
- 发表时间:2023-07
- 期刊:
- 影响因子:1.9
- 作者:Hussah Alrashid;Yongyi Liu;A. Magdy
- 通讯作者:Hussah Alrashid;Yongyi Liu;A. Magdy
Statistical Inference for Spatial Regionalization
- DOI:10.1145/3589132.3625608
- 发表时间:2023-11
- 期刊:
- 影响因子:0
- 作者:Hussah Alrashid;A. Magdy;Sergio Rey
- 通讯作者:Hussah Alrashid;A. Magdy;Sergio Rey
A Scalable Unified System for Seeding Regionalization Queries
- DOI:10.1145/3609956.3609980
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Hussah Alrashid;A. Magdy
- 通讯作者:Hussah Alrashid;A. Magdy
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amr Magdy其他文献
Guest Editorial: Special Issue on Analytics for Local Events and News
- DOI:
10.1007/s10707-020-00409-8 - 发表时间:
2020-04-23 - 期刊:
- 影响因子:2.600
- 作者:
Amr Magdy;Xun Zhou;Daniel B. Neill - 通讯作者:
Daniel B. Neill
On scalable DCEL overlay operations
- DOI:
10.1007/s10707-025-00539-x - 发表时间:
2025-04-23 - 期刊:
- 影响因子:2.600
- 作者:
Andres Calderon-Romero;Laila Abdelhafeez;Goce Trajcevski;Amr Magdy;Vassilis J. Tsotras - 通讯作者:
Vassilis J. Tsotras
Amr Magdy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amr Magdy', 18)}}的其他基金
CRII: III: Scalable Noise-filtering and Community Queries on User-generated Data
CRII:III:可扩展的噪声过滤和对用户生成数据的社区查询
- 批准号:
1849971 - 财政年份:2019
- 资助金额:
$ 53.17万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
A Platform for Scalable Spatial Somatic Variant Profiling
可扩展的空间体细胞变异分析平台
- 批准号:
10662761 - 财政年份:2023
- 资助金额:
$ 53.17万 - 项目类别:
In vivo Perturb-map: scalable genetic screens with single-cell and spatial resolution in intact tissues
体内扰动图:在完整组织中具有单细胞和空间分辨率的可扩展遗传筛选
- 批准号:
10578616 - 财政年份:2023
- 资助金额:
$ 53.17万 - 项目类别:
PED-PHAM: An Automated and Scalable Spatial Tool That Predicts and Monetizes Health Impacts of the Built, Natural, and Social Environment
PED-PHAM:一种自动化且可扩展的空间工具,可预测建筑、自然和社会环境对健康的影响并从中获利
- 批准号:
10761396 - 财政年份:2023
- 资助金额:
$ 53.17万 - 项目类别:
Development of advanced scalable 3D spatial techniques for multi-spectral LiDAR point cloud modeling of boreal forest inventory attributes, above-ground carbon, and wildfire fuel.
开发先进的可扩展 3D 空间技术,用于北方森林库存属性、地上碳和野火燃料的多光谱 LiDAR 点云建模。
- 批准号:
570298-2022 - 财政年份:2022
- 资助金额:
$ 53.17万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Highly scalable and sensitive spatial transcriptomic and epigenomic sequencing of brain tissues from human and non-human primate
对人类和非人类灵长类动物的脑组织进行高度可扩展且灵敏的空间转录组和表观基因组测序
- 批准号:
10370074 - 财政年份:2021
- 资助金额:
$ 53.17万 - 项目类别:
Collaborative Research: Scalable Gaussian-Process Methods for Spatial Statistics and Machine Learning
合作研究:空间统计和机器学习的可扩展高斯过程方法
- 批准号:
1953005 - 财政年份:2020
- 资助金额:
$ 53.17万 - 项目类别:
Standard Grant
GeoFlink: A real-time and highly scalable processing framework for the spatial data streams
GeoFlink:一个实时且高度可扩展的空间数据流处理框架
- 批准号:
20K19806 - 财政年份:2020
- 资助金额:
$ 53.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Scalable Gaussian-Process Methods for Spatial Statistics and Machine Learning
合作研究:空间统计和机器学习的可扩展高斯过程方法
- 批准号:
1953088 - 财政年份:2020
- 资助金额:
$ 53.17万 - 项目类别:
Standard Grant
Development of scalable micro-stereolithography using spatial light moduration
使用空间光调制开发可扩展的微立体光刻技术
- 批准号:
18K13667 - 财政年份:2018
- 资助金额:
$ 53.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




