Collaborative Research: Scalable Gaussian-Process Methods for Spatial Statistics and Machine Learning
合作研究:空间统计和机器学习的可扩展高斯过程方法
基本信息
- 批准号:1953005
- 负责人:
- 金额:$ 17.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Gaussian process is a mathematical tool that can use incomplete data to fill in gaps, for example to interpolate the temperature at a person’s house given a network of nearby weather stations. Gaussian processes are used in many application areas, such as geospatial analysis, machine learning, and the analysis of computer experiments. Gaussian processes are flexible, interpretable, and provide natural quantification of uncertainty. However, direct application of Gaussian processes is too computationally expensive for large datasets. This project addresses the computational challenges with novel algorithms and bridges the gap between statistical and machine learning approaches. As big data now appear in almost every field of science and society, providing powerful, scalable, and free software to analyze such datasets can have a transformative effect. This work will replace current practices and approximations for massive spatial data that are often simplistic due to computational limitations. This project can lead to improved accuracy and uncertainty quantification in countless applications with direct impact on society, including carbon monitoring, renewable energy, rainfall prediction, calibration of robotic arms, and modeling and prediction of insurgent activities. The developed methods and software will thus be an important tool for computational and data-enabled science and engineering. The investigators will mentor and train student researchers, and share the project findings via journal publications and conference presentations.The goal of this project is to develop a nearly universal toolbox for scalable Gaussian process (GP) modeling. The toolbox is based on the ordered conditional approximation (OCA), a simple but very powerful idea that exploits the screening effect (i.e., conditional independence) exhibited by many popular covariance functions. The OCA framework unifies many state-of-the-art GP approximations from statistics, machine learning, and numerical linear algebra. This project will result in new, highly accurate OCA methods with guaranteed scalability and broad applicability for modeling and analysis of nonstationary, multivariate, multi-scale, and other processes. Also, extensions will be developed that allow these new spatial-statistics methods to be used in a variety of machine-learning applications, where OCA-type approaches have not received much attention so far. For the new methods, the computational cost is guaranteed to be linear in the data size, with further speed-ups possible through parallelization. All approaches will be implemented in easy-to-use open-source software. This will allow users to bring the power of GPs to bear on modern datasets, enabling spatial prediction, calibration, parameter learning, and nonparametric regression with big data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
高斯过程是一种数学工具,可以使用不完整的数据来填补空白,例如在附近的气象站网络中插入一个人的房子的温度。高斯过程被用于许多应用领域,例如地理空间分析,机器学习和计算机实验分析。高斯过程是灵活的,可解释的,并提供不确定性的自然量化。然而,直接应用高斯过程对于大型数据集来说计算代价太高。该项目通过新颖的算法解决计算挑战,并弥合统计和机器学习方法之间的差距。由于大数据现在几乎出现在科学和社会的每个领域,提供强大的,可扩展的和免费的软件来分析这些数据集可以产生变革性的影响。这项工作将取代目前的做法和近似的大量空间数据,往往是简单化,由于计算的限制。该项目可以提高对社会有直接影响的无数应用的准确性和不确定性量化,包括碳监测,可再生能源,降雨预测,机器人手臂校准以及叛乱活动的建模和预测。因此,开发的方法和软件将成为计算和数据支持的科学和工程的重要工具。研究人员将指导和培训学生研究人员,并通过期刊出版物和会议演示分享项目成果。该项目的目标是开发一个几乎通用的工具箱,用于可扩展高斯过程(GP)建模。该工具箱基于有序条件近似(OCA),这是一个简单但非常强大的想法,它利用了筛选效应(即,条件独立性)由许多流行的协方差函数表现出来。OCA框架统一了来自统计、机器学习和数值线性代数的许多最先进的GP近似。该项目将产生新的,高度准确的OCA方法,具有保证的可扩展性和广泛的适用性,用于非平稳,多变量,多尺度和其他过程的建模和分析。此外,将开发扩展,使这些新的空间统计方法被用于各种机器学习应用程序,其中的OCA类型的方法还没有得到太多的关注。对于新方法,计算成本保证在数据大小上是线性的,通过并行化可以进一步加速。所有方法都将在易于使用的开放源码软件中实施。这将使用户能够将GPS的力量应用于现代数据集,实现空间预测,校准,参数学习和大数据的非参数回归。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scalable spatio-temporal smoothing via hierarchical sparse Cholesky decomposition.
通过分层稀疏 Cholesky 分解进行可扩展的时空平滑。
- DOI:10.1002/env.2757
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Jurek, M.
- 通讯作者:Jurek, M.
Scalable Gaussian-process regression and variable selection using Vecchia approximations
- DOI:
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Jian Cao;J. Guinness;M. Genton;M. Katzfuss
- 通讯作者:Jian Cao;J. Guinness;M. Genton;M. Katzfuss
Ensemble Kalman filter updates based on regularized sparse inverse Cholesky factors
基于正则化稀疏逆 Cholesky 因子的集成卡尔曼滤波器更新
- DOI:10.1175/mwr-d-20-0299.1
- 发表时间:2021
- 期刊:
- 影响因子:3.2
- 作者:Boyles, Will;Katzfuss, Matthias
- 通讯作者:Katzfuss, Matthias
High-Dimensional Nonlinear Spatio-Temporal Filtering by Compressing Hierarchical Sparse Cholesky Factors
通过压缩分层稀疏 Cholesky 因子进行高维非线性时空滤波
- DOI:10.6339/22-jds1071
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chakraborty, Anirban;Katzfuss, Matthias
- 通讯作者:Katzfuss, Matthias
Multi-Scale Vecchia Approximations of Gaussian Processes
高斯过程的多尺度 Vecchia 近似
- DOI:10.1007/s13253-022-00488-0
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zhang, Jingjie;Katzfuss, Matthias
- 通讯作者:Katzfuss, Matthias
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Katzfuss其他文献
Climate Change Detection and Attribution
气候变化检测和归因
- DOI:
10.1201/9781315152509-38 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
D. Hammerling;Matthias Katzfuss;Richard Smith - 通讯作者:
Richard Smith
Learning Non-Gaussian Spatial Distributions Via Bayesian Transport Maps with Parametric Shrinkage
- DOI:
10.1007/s13253-025-00687-5 - 发表时间:
2025-03-22 - 期刊:
- 影响因子:1.100
- 作者:
Anirban Chakraborty;Matthias Katzfuss - 通讯作者:
Matthias Katzfuss
Locally Anisotropic Nonstationary Covariance Functions on the Sphere
球面上的局部各向异性非平稳协方差函数
- DOI:
10.1007/s13253-023-00573-y - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jian Cao;Jingjie Zhang;Zhuoer Sun;Matthias Katzfuss - 通讯作者:
Matthias Katzfuss
Linear-Cost Vecchia Approximation of Multivariate Normal Probabilities
多元正态概率的线性成本 Vecchia 近似
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jian Cao;Matthias Katzfuss - 通讯作者:
Matthias Katzfuss
Matthias Katzfuss的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Katzfuss', 18)}}的其他基金
World Meeting of the International Society for Bayesian Analysis 2022
2022 年国际贝叶斯分析学会世界会议
- 批准号:
2206934 - 财政年份:2022
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
CAREER: Data Assimilation for Massive Spatio-Temporal Systems Using Multi-Resolution Filters
职业:使用多分辨率滤波器对大规模时空系统进行数据同化
- 批准号:
1654083 - 财政年份:2017
- 资助金额:
$ 17.99万 - 项目类别:
Continuing Grant
Statistical Analysis of Massive Spatio-Temporal Datasets Using Distributed Computing
利用分布式计算对海量时空数据集进行统计分析
- 批准号:
1521676 - 财政年份:2015
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315996 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330195 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Circuit theoretic Framework for Large Grid Simulations and Optimizations: from Combined T&D Planning to Electromagnetic Transients
协作研究:大型电网仿真和优化的可扩展电路理论框架:来自组合 T
- 批准号:
2330196 - 财政年份:2024
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
- 批准号:
2319592 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
- 批准号:
2347617 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging Crowd-AI Teams for Scalable Novelty Ratings of Heterogeneous Design Representations
协作研究:利用群体人工智能团队对异构设计表示进行可扩展的新颖性评级
- 批准号:
2231254 - 财政年份:2023
- 资助金额:
$ 17.99万 - 项目类别:
Standard Grant