CAREER: Spatial Network Deep Generative Modeling, Transformation, and Interpretation

职业:空间网络深度生成建模、转换和解释

基本信息

  • 批准号:
    2113350
  • 负责人:
  • 金额:
    $ 54.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

As we enter the modern big data era, spatial data and network data are popular types of high-dimensional data with continuous and discrete properties, respectively. Spanning these two data types, spatial networks represent a crucial data structure where the nodes and edges are embedded in a geometric space. Nowadays, spatial network data is becoming increasingly popular and important, ranging from micro-scale (e.g., protein structures), to middle-scale (e.g., biological neural networks), to macro-scale (e.g., mobility networks). The modeling of spatial networks is extremely difficult due to the significant challenges involved, including: 1) incompatibility between the treatments for continuous spatial properties and discrete network properties, 2) the close interactions between spatial and network topologies, and 3) their extremely high dimensionality. These challenges echo numerous unsolved critical issues in the real world such as modeling and understanding the "protein structure folding process" and "mental disease mechanisms in brain networks". Until now, there has been a significant gap between our lack of powerful models and the extremely complex research issues involved in modeling the generation of spatial networks. To fill this gap, this project focuses on developing a transformative framework for spatial network generative modeling, which can automatically learn the underlying complex generation process from massive spatial network datasets.This project generalizes existing generative models of spatial networks into deep and expressive architectures. The developed framework aims at: 1) automatically learning new generation and transformation process of spatial networks, 2) embedding user-specified principles to constrain and regularize the generated spatial networks, and 3) pursuing the model interpretability and automatically distill new understandable principles of spatial network process. The research activities are conducted along the following themes: i) novel spatial and spectral graph decoders for large spatial networks, ii) deep generative modeling and optimization with spatial and topological constraints and regularization, iii) a variety of novel spatial- and spectral- graph transformation strategies, and iv) a novel system for interacting the predefined and distilled principles between human and models. The techniques developed in this project aim at benefiting various social and natural science domains by enabling efficient and accurate discovery and synthesis of complex spatial network behavior. The success of this project can benefit crucial domains including medicine design, mental disease early diagnoses, and disaster management. Core products of this project, including publications, software, and datasets, are published in various websites with active user support, in order to largely benefit the research communities and the society. The proposed unified framework is also used for teaching spatial and network data mining concepts, as well as providing graduate and undergraduate students with new courses, research, and internship opportunities. This project actively includes underrepresented students and outreach to local high schools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着现代大数据时代的到来,空间数据和网络数据分别是具有连续和离散属性的高维数据。跨越这两种数据类型,空间网络代表了一种重要的数据结构,其中节点和边嵌入在几何空间中。如今,空间网络数据变得越来越流行和重要,范围从微观尺度(例如,蛋白质结构),到中等规模(例如,生物神经网络),到宏观尺度(例如,移动网络)。空间网络的建模是非常困难的,由于涉及的重大挑战,包括:1)连续空间属性和离散网络属性之间的处理不兼容,2)空间和网络拓扑之间的密切相互作用,以及3)它们的极高维度。这些挑战反映了真实的世界中许多尚未解决的关键问题,例如对“蛋白质结构折叠过程”和“大脑网络中的精神疾病机制”进行建模和理解。到目前为止,在我们缺乏强大的模型和对空间网络生成进行建模所涉及的极其复杂的研究问题之间存在着巨大的差距。为了填补这一空白,本项目致力于开发一个空间网络生成建模的变革性框架,该框架可以从海量空间网络数据集中自动学习底层复杂的生成过程。本项目将现有的空间网络生成模型推广到深度和表达性架构。该框架的目标是:1)自动学习新的空间网络生成和转换过程; 2)嵌入用户指定的规则来约束和规则化生成的空间网络; 3)追求模型的可解释性,自动提取新的空间网络过程的可理解规则。研究活动沿着以下主题进行:i)用于大型空间网络的新颖的空间和谱图解码器,ii)具有空间和拓扑约束以及正则化的深度生成建模和优化,iii)各种新颖的空间和谱图变换策略,以及iv)用于在人类和模型之间交互预定义和提取原则的新颖系统。该项目开发的技术旨在通过高效准确地发现和合成复杂的空间网络行为,使各种社会和自然科学领域受益。该项目的成功可以使药物设计、精神疾病早期诊断和灾害管理等关键领域受益。该项目的核心产品,包括出版物,软件和数据集,在各种网站上发布,并得到用户的积极支持,以便在很大程度上使研究界和社会受益。建议的统一框架也用于教学空间和网络数据挖掘的概念,以及为研究生和本科生提供新的课程,研究和实习机会。该项目积极包括代表性不足的学生和推广到当地高中。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(45)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Small molecule generation via disentangled representation learning
  • DOI:
    10.1093/bioinformatics/btac296
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Yuanqi Du;Xiaojie Guo;Yinkai Wang;Amarda Shehu;Liang Zhao
  • 通讯作者:
    Yuanqi Du;Xiaojie Guo;Yinkai Wang;Amarda Shehu;Liang Zhao
Accelerated Gradient-free Neural Network Training by Multi-convex Alternating Optimization
  • DOI:
    10.1016/j.neucom.2022.02.039
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Junxiang Wang;Fuxun Yu;Xiangyi Chen;Liang Zhao
  • 通讯作者:
    Junxiang Wang;Fuxun Yu;Xiangyi Chen;Liang Zhao
A Systematic Survey on Deep Generative Models for Graph Generation
Adaptive Kernel Graph Neural Network
  • DOI:
    10.1609/aaai.v36i6.20664
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mingxuan Ju;Shifu Hou;Yujie Fan;Jianan Zhao;Liang Zhao;Yanfang Ye
  • 通讯作者:
    Mingxuan Ju;Shifu Hou;Yujie Fan;Jianan Zhao;Liang Zhao;Yanfang Ye
Deep Multi-attributed Graph Translation with Node-Edge Co-Evolution
  • DOI:
    10.1109/icdm.2019.00035
  • 发表时间:
    2019-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaojie Guo;Liang Zhao;Cameron Nowzari;S. Rafatirad;H. Homayoun;Sai Manoj Pudukotai Dinakarrao
  • 通讯作者:
    Xiaojie Guo;Liang Zhao;Cameron Nowzari;S. Rafatirad;H. Homayoun;Sai Manoj Pudukotai Dinakarrao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang Zhao其他文献

Novel imidazolium stationary phase for high-performance liquid chromatography.
用于高效液相色谱的新型咪唑固定相。
  • DOI:
    10.1016/j.chroma.2006.03.016
  • 发表时间:
    2006-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongdeng Qiu;Shengxiang Jiang;Xia Liu*;Liang Zhao
  • 通讯作者:
    Liang Zhao
Large-Scale Text Classification Using Scope-Based Convolutional Neural Network: A Deep Learning Approach
使用基于范围的卷积神经网络进行大规模文本分类:一种深度学习方法
  • DOI:
    10.1109/access.2019.2955924
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Jiaying Wang;Yaxin Li;Jing Shan;Jinling Bao;Chuanyu Zong;Liang Zhao
  • 通讯作者:
    Liang Zhao
Phenotypic effects of the nurse Thylacospermum caespitosum on dependent plant species along regional climate stress gradients
沿区域气候胁迫梯度,袋囊草保育员对依赖植物物种的表型影响
  • DOI:
    10.1111/oik.04512
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Xingpei Jiang;Richard Michalet;Shuyan Chen;Liang Zhao;Xiangtai Wang;Chenyue Wang;Lizhe An;Sa Xiao
  • 通讯作者:
    Sa Xiao
A visualized study of interfacial behavior of air–water two-phase flow in a rectangular Venturi channel
矩形文丘里通道中气水两相流界面行为的可视化研究
  • DOI:
    10.1016/j.taml.2018.05.004
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Jiang Huang;Licheng Sun;Min Du;Zhengyu Mo;Liang Zhao
  • 通讯作者:
    Liang Zhao
Simultaneous Photo‐Induced Magnetic and Dielectric Switching in an Iron(II)‐Based Spin‐Crossover Hofmann‐Type Metal‐Organic Framework
铁 (II) 中的同步光感应磁和介电开关 – 基于自旋 – 交叉霍夫曼 – 类型金属 – 有机框架
  • DOI:
    10.1002/anie.202208208
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nian-Tao Yao;Liang Zhao;Hui-Ying Sun;Cheng Yi;Ya-Hui Guan;Ya-Ming Li;Hiroki Oshio;Yin-Shan Meng;Tao Liu
  • 通讯作者:
    Tao Liu

Liang Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang Zhao', 18)}}的其他基金

Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
CAREER: Uncovering Solar Wind Composition, Acceleration, and Origin through Observations, Modeling, and Machine Learning Methods
职业:通过观测、建模和机器学习方法揭示太阳风的成分、加速度和起源
  • 批准号:
    2237435
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
Travel: NSF Student Travel Support for the 2023 IEEE International Conference on Data Mining (IEEE ICDM 2023)
旅行:2023 年 IEEE 国际数据挖掘会议 (IEEE ICDM 2023) 的 NSF 学生旅行支持
  • 批准号:
    2324784
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
SHINE: Understanding the Physical Connection of the in-situ Properties and Coronal Origins of the Solar Wind with a Novel Artificial Intelligence Investigation
SHINE:通过新颖的人工智能研究了解太阳风的原位特性和日冕起源的物理联系
  • 批准号:
    2229138
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
III: Small: Graph Generative Deep Learning for Protein Structure Prediction
III:小:用于蛋白质结构预测的图生成深度学习
  • 批准号:
    2110926
  • 财政年份:
    2020
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
  • 批准号:
    2007976
  • 财政年份:
    2020
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
CRII: III: Interpretable Models for Spatio-Temporal Event Forecasting using Social Sensors
CRII:III:使用社交传感器进行时空事件预测的可解释模型
  • 批准号:
    2103745
  • 财政年份:
    2020
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
  • 批准号:
    2106446
  • 财政年份:
    2020
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
III: Small: Deep Generative Models for Temporal Graph Generation and Interpretation
III:小:用于时间图生成和解释的深度生成模型
  • 批准号:
    2007716
  • 财政年份:
    2020
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Standard Grant
CAREER: Spatial Network Deep Generative Modeling, Transformation, and Interpretation
职业:空间网络深度生成建模、转换和解释
  • 批准号:
    1942594
  • 财政年份:
    2020
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant

相似国自然基金

高铁对欠发达省域国土空间协调(Spatial Coherence)影响研究与政策启示-以江西省为例
  • 批准号:
    52368007
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
高铁影响空间失衡(Spatial Inequality)的多尺度变异机理的理论和实证研究
  • 批准号:
    51908258
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Network mechanisms underlying multisensory spatial attention
多感官空间注意的网络机制
  • 批准号:
    BB/X013472/1
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Research Grant
Development of a spatial analysis model based on a minimum Isovist network taking into account local spatial information
考虑局部空间信息的基于最小 Isovist 网络的空间分析模型的开发
  • 批准号:
    23K04161
  • 财政年份:
    2023
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Policy Impact Analysis of Dynamic and Spatial Agglomeration in Infrastructure Network and Urban System
基础设施网络与城市体系动态空间集聚的政策影响分析
  • 批准号:
    22H00840
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Predicting the Spatial Structure of Proteins by a Strongly Correlated Neural Network
通过强相关神经网络预测蛋白质的空间结构
  • 批准号:
    558765-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of a high spatial-temporal resolution geospace observation network using the mid-latitude SuperDARN
利用中纬度SuperDARN开发高时空分辨率地球空间观测网络
  • 批准号:
    22H01284
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Accelerating Spatial Network Design: An Uncertainty-Driven Predict-and-Optimize Learning Framework
职业:加速空间网络设计:不确定性驱动的预测和优化学习框架
  • 批准号:
    2144338
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Continuing Grant
A Role for the Astrocytic Network in Spatial Navigation
星形胶质细胞网络在空间导航中的作用
  • 批准号:
    10360100
  • 财政年份:
    2022
  • 资助金额:
    $ 54.97万
  • 项目类别:
Using Web Data and Network Science to Detect Spatial Relationships
使用网络数据和网络科学检测空间关系
  • 批准号:
    2592871
  • 财政年份:
    2021
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Studentship
Evolutionary adaptation and spatial organization of signaling in the Mitotic Exit Network
有丝分裂出口网络中信号的进化适应和空间组织
  • 批准号:
    10746190
  • 财政年份:
    2021
  • 资助金额:
    $ 54.97万
  • 项目类别:
Developing a multi-layer network and spatial structure optimization model for simultaneous provision of forest ecosystem functions
开发同时提供森林生态系统功能的多层网络和空间结构优化模型
  • 批准号:
    21K12366
  • 财政年份:
    2021
  • 资助金额:
    $ 54.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了