CAREER: Low-Temperature Plasma Assisted Combustion of Oxygenated Fuels for Cleaner and Sustainable Mobility

职业:低温等离子体辅助含氧燃料燃烧,实现更清洁和可持续的交通

基本信息

  • 批准号:
    2237492
  • 负责人:
  • 金额:
    $ 51.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Concurrent development of electric vehicles, along with next-generation engines using renewable biofuels has shown to be an effective strategy to meet the energy demands and improve the future sustainability of the transportation sector. However, achieving reliable combustion with fuels that exhibit a large selection of oxygenated components, at highly fuel-lean conditions, across the operational domain of the engine has proven a technological challenge. Low-temperature plasmas (LTP) are seen as an enabling technology to overcome this barrier, due to their demonstrated ability to enhance combustion, provide fast-gas heating and facilitate flame kernel growth. But there remains a knowledge gap on the interaction between plasmachemical effects and the basic combustion phenomenon to effectively couple the utilization of LTP and biofuels. Leveraging unique experimental platforms and modeling tools tailored for plasma-assisted combustion (PAC) research, this project aims to uncover these chemical fundamentals that could demonstrate enhanced chemical reactivity, improved energy extraction and ignition, with reduced pollutant formation. The results from this project will be shared openly with both academia and industry to support LTP innovation and have an immediate impact on combustion engineering for vehicular, aerospace and energy-related applications, with overarching benefits towards economic globalization and developing economies. To integrate LTP combustion research and education, this project will: (1) leverage game-based learning to progressively engage the undergraduate/graduate curriculum to introduce new knowledge; (2) engage with a K-12 outreach program to broaden the participation of underrepresented STEM students; and (3) disseminate research findings to the general public by developing a new animation video with emphasis on the importance of energy sustainability, while educating on its social, political and economic implications. LTP-based technologies are essential to advance next-generation internal combustion engines toward renewable biofuels and dilute-burn strategies. This project addresses the lack of fundamental understanding of plasmachemical effects on combustion reactivity and ignition characteristics, and adds a new emphasis on oxygenated fuels. This work also provides a new demonstration of the merits of LTP to improve combustion engineering. These contributions will be achieved through a study of LTP plasmachemical effects on the low-temperature combustion (LTC) reaction kinetics of oxygenated fuels and ignition characteristics, and subsequent implications on pollutant formation and dilute-burn reactivity. Outcomes will be demonstrated through plasma-coupled experimental facilities and numerical models to measure key chemical species and combustion metrics, and simulate important reactions to elucidate an understanding of: (1) the alteration of LTC chemical reactivity by LTP for a range of oxygenated fuels based on oxygen functionality; (2) subsequent alteration of LTC reactivity in the presence of residual gas components and pollutant formation kinetics; (3) the alteration of ignition and heat-release characteristics of oxygenated fuels toward fuel-lean and dilute-burn conditions; and (4) development of a PAC-specific kinetic mechanism for predictive simulation tools. This contribution is significant because it is expected to constitute a progression of research that is currently lacking to demonstrate the ability to alter the chemical reactivity of high-octane oxygenated fuels through LTP. Ultimately, this research will support LTP as a technology to enable reactivity control for advanced compression-ignition engines and drive future designs toward renewable biofuels to achieve a sustainable future for mobility.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
电动汽车的同步发展,沿着使用可再生生物燃料的下一代发动机,已被证明是满足能源需求和提高运输部门未来可持续性的有效战略。然而,在高度贫燃料条件下,在发动机的整个操作域中实现具有表现出大量氧化组分选择的燃料的可靠燃烧已被证明是一个技术挑战。低温等离子体(LTP)被认为是一种克服这一障碍的技术,因为它们具有增强燃烧、提供快速气体加热和促进火焰核生长的能力。但是,在等离子体化学效应和基本燃烧现象之间的相互作用方面仍然存在知识空白,以有效地将LTP和生物燃料的利用结合起来。利用为等离子体辅助燃烧(PAC)研究量身定制的独特实验平台和建模工具,该项目旨在揭示这些化学基本原理,这些化学基本原理可以证明增强的化学反应性,改善的能量提取和点火,减少污染物的形成。该项目的成果将与学术界和工业界公开分享,以支持LTP创新,并对车辆,航空航天和能源相关应用的燃烧工程产生直接影响,对经济全球化和发展中经济体产生总体效益。为了整合LTP燃烧研究和教育,该项目将:(1)利用基于游戏的学习来逐步参与本科/研究生课程,以引入新知识;(2)参与K-12外展计划,以扩大代表性不足的STEM学生的参与;及(3)制作新的动画短片,向公众宣传研究结果,强调能源可持续性的重要性,同时教育其社会、政治和经济影响。 基于LTP的技术对于推动下一代内燃机向可再生生物燃料和稀燃战略发展至关重要。该项目解决了缺乏对等离子体化学对燃烧反应性和点火特性的影响的基本理解,并增加了对含氧燃料的新重视。这项工作还为LTP改善燃烧工程的优点提供了新的证明。这些贡献将通过研究LTP等离子体化学对含氧燃料低温燃烧(LTC)反应动力学和点火特性的影响,以及随后对污染物形成和稀释燃烧反应性的影响来实现。结果将通过等离子体耦合实验设施和数值模型来证明,以测量关键的化学物质和燃烧指标,并模拟重要的反应,以阐明对以下内容的理解:(1)基于氧功能的一系列含氧燃料的LTP对LTC化学反应性的改变;(2)在残余气体成分和污染物形成动力学存在下LTC反应性的后续改变;(3)含氧燃料的点火和放热特性向贫燃和稀燃条件的改变;(4)用于预测模拟工具的PAC特定动力学机制的开发。这一贡献是重要的,因为它预计将构成目前缺乏的研究进展,以证明通过LTP改变高辛烷值含氧燃料的化学反应性的能力。最终,这项研究将支持LTP作为一种技术,使先进的压燃式发动机的反应性控制,并推动未来的设计向可再生生物燃料,以实现可持续的未来流动性。该奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Tsolas其他文献

Nicholas Tsolas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Tsolas', 18)}}的其他基金

MRI: Development of a Non-Equilibrium Plasma Coupled Rapid Compression Machine
MRI:非平衡等离子体耦合快速压缩机的开发
  • 批准号:
    1919952
  • 财政年份:
    2019
  • 资助金额:
    $ 51.82万
  • 项目类别:
    Standard Grant

相似国自然基金

MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
  • 批准号:
    82271095
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
  • 批准号:
    82270883
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
  • 批准号:
    82270588
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    54.7 万元
  • 项目类别:
    面上项目
circEFEMP1招募PRC2促进HOXA6启动子组蛋白甲基化修饰调控Claudin4-Low型TNBC迁移侵袭和转移的作用机制
  • 批准号:
    82002807
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
上皮间质转化在Numb-/low前列腺癌细胞雄激素非依赖性中的作用及机制
  • 批准号:
    82003061
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Bach2调控CD45RA-Foxp3low T细胞影响B细胞功能及其在系统性红斑狼疮中作用的机制研究
  • 批准号:
    81873863
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Beyond differential expression: quantifying transcriptional dynamics and testing for adaptive value of transcriptomic responses at low temperature
职业:超越差异表达:量化转录动态并测试低温下转录组反应的适应性价值
  • 批准号:
    2045263
  • 财政年份:
    2021
  • 资助金额:
    $ 51.82万
  • 项目类别:
    Continuing Grant
CAREER: Controlling Low Temperature Plasma Activation
职业:控制低温等离子体激活
  • 批准号:
    1847469
  • 财政年份:
    2019
  • 资助金额:
    $ 51.82万
  • 项目类别:
    Standard Grant
CAREER: New Algorithms to Simulate Ultracold Matter Out of Equilibrium and Redefine the Low-Temperature Frontier
职业:模拟失衡超冷物质并重新定义低温前沿的新算法
  • 批准号:
    1848304
  • 财政年份:
    2019
  • 资助金额:
    $ 51.82万
  • 项目类别:
    Continuing Grant
CAREER: Developing Multi-Scale Models for the Effective Design of Hydrothermally Stable Single-Site Catalysts for Low-Temperature CO Emissions Removal
职业:开发多尺度模型,用于有效设计用于低温二氧化碳减排的水热稳定单中心催化剂
  • 批准号:
    1653561
  • 财政年份:
    2017
  • 资助金额:
    $ 51.82万
  • 项目类别:
    Standard Grant
CAREER: Assessing Low Temperature Phase Stability through Irradiation
职业:通过辐照评估低温相稳定性
  • 批准号:
    1653123
  • 财政年份:
    2017
  • 资助金额:
    $ 51.82万
  • 项目类别:
    Continuing Grant
CAREER: Fuels, Additives and Emissions in Low-Temperature Combustion
职业:低温燃烧中的燃料、添加剂和排放
  • 批准号:
    1553366
  • 财政年份:
    2016
  • 资助金额:
    $ 51.82万
  • 项目类别:
    Standard Grant
CAREER: Low-Temperature Growth of High Crystallinity GeSn on Amorphous Materials for Advanced Optoelectronics
职业:用于先进光电子学的非晶材料上高结晶度 GeSn 的低温生长
  • 批准号:
    1255066
  • 财政年份:
    2013
  • 资助金额:
    $ 51.82万
  • 项目类别:
    Continuing Grant
CAREER: Integrating Research and Education via Low-Temperature Solventless Formation of Hierarchical Porous-on-Porous Materials
职业:通过低温无溶剂形成多级孔叠孔材料将研究和教育结合起来
  • 批准号:
    1252651
  • 财政年份:
    2013
  • 资助金额:
    $ 51.82万
  • 项目类别:
    Standard Grant
CAREER: Low Temperature Microplasmas For Thermal Energy Conversion, Education, and Outreach
职业:用于热能转换、教育和推广的低温微等离子体
  • 批准号:
    1254273
  • 财政年份:
    2013
  • 资助金额:
    $ 51.82万
  • 项目类别:
    Continuing Grant
CAREER: Low-temperature Spin Spray Synthesized Magnetoelectric Nanocomposite Films for Novel RF and Microwave Devices
职业:用于新型射频和微波器件的低温旋转喷涂合成磁电纳米复合薄膜
  • 批准号:
    0746810
  • 财政年份:
    2008
  • 资助金额:
    $ 51.82万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了