CAREER: WoU-MMA: Understanding the Neutrino Sky
职业:WoU-MMA:了解中微子天空
基本信息
- 批准号:2237581
- 负责人:
- 金额:$ 81.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Cosmic rays, particles arriving at the Earth from distant sources, can have energies exceeding 10 million times that of the highest-energy man-made particle accelerators. A century after their discovery, however, the origin of these remarkable particles, and the process responsible for giving them these energies remains unknown. A first glimpse at these sources has come over the last decade from the Antarctic's IceCube Neutrino Observatory, revealing the approximate locations of a number of them, but without the precision to identify what they are. This award supports new approaches to analyze existing IceCube data to untangle this mystery as well as the first steps to develop a next-generation observatory, P-ONE, at the bottom of the Pacific Ocean off the Washington coast that will provide much higher-precision measurements and fully open the new window on the universe provided by IceCube -- as well as providing a unique platform for studying the deep ocean. As part of this effort, the award will also support work to improve teaching in physics to improve accessibility and emphasize the subject as an experimental science rather than as only a mathematical exercise and to better align coursework with the skills needed for both academic and industry careers.Neutrinos, able to pass through obstacles opaque to light, provide a unique view of the high-energy and distant universe. Over the last eight years, the IceCube Neutrino Observatory has provided the first glimpse of these high-energy neutrinos from astrophysical objects, with the first detection of a bright, diffuse background (2014) and of the first source (2018). These results present something of a puzzle: The neutrino sky is more isotropic than light at any wavelength except the cosmic microwave background and the first (and presumably brightest) source is both a vast distance from Earth and otherwise unremarkable. Together, these observations strongly suggest that neutrinos are telling us something fundamentally new about the universe, something that we have not anticipated and have no other way to see, but we do yet have the data to understand what it might be. This award approaches this problem on two paths: new methods for analysis of existing IceCube data, notably by cross-correlation with millimeter-band observations of active galaxies, of which hints have been reported, and by development of the electronics for a new neutrino telescope in the northeast Pacific, P-ONE. P-ONE is expected to achieve angular resolution 4-5 times better than IceCube, increasing the expected number of detected sources by an order of magnitude and allowing the first population studies of neutrino sources. Moreover, P-ONE's peak sensitivity will be in the southern sky, unlike IceCube, which makes it well-matched to studies of our galaxy and the fields of view of most next-generation electromagnetic observatories (Rubin, ELT, CMB-S4, SKA, SWGO, etc.). Anticipated education and outreach aspects of the award include outreach in Michigan schools, a pair of programs to increase diversity at the undergraduate to graduate transition, and new programs for teaching experimental physics at the graduate and undergraduate level. In addition, the award supports the installation of a new exhibit on cosmic rays and particle physics at the Impression Five science center, a major center for science education in mid-Michigan attracting nearly 200,000 visitors a year.The award is aligned with the NSF Big Idea of Windows on the Universe: the Era of Multi-messenger Astrophysics as it coordinates the use of multi-messengers observations utilizing long wavelength (mm/cm) photons with high energy neutrinos from IceCube and will improve the interpretation of data especially through improving the understanding of diffuse sources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
宇宙射线是从遥远的源头到达地球的粒子,其能量可以超过最高能量的人造粒子加速器的1000万倍。然而,在它们被发现后的世纪,这些非凡粒子的起源,以及赋予它们这些能量的过程仍然是未知的。在过去的十年里,南极洲的冰立方中微子天文台首次看到了这些来源,揭示了其中一些来源的大致位置,但没有精确的识别它们是什么。该奖项支持分析现有IceCube数据的新方法,以解开这个谜团,以及在华盛顿海岸外的太平洋底部开发下一代天文台P-ONE的第一步,该天文台将提供更高精度的测量,并完全打开IceCube提供的宇宙新窗口-以及为研究深海提供独特的平台。作为这一努力的一部分,该奖项还将支持改善物理学教学的工作,以提高可及性,并强调该学科是一门实验科学,而不仅仅是一个数学练习,并更好地将课程与学术和工业职业所需的技能相结合。中微子能够穿过不透光的障碍物,为高能和遥远的宇宙提供了独特的视角。在过去的八年里,冰立方中微子天文台首次从天体物理学物体中瞥见了这些高能中微子,首次探测到明亮的漫射背景(2014年)和第一个来源(2018年)。这些结果提出了一个难题:中微子天空比任何波长的光都更加各向同性,除了宇宙微波背景,第一个(也可能是最亮的)源距离地球很远,而且在其他方面都不起眼。总之,这些观测结果强烈表明,中微子正在告诉我们一些关于宇宙的根本性的新东西,一些我们没有预料到的东西,也没有其他方法可以看到,但我们仍然有数据来了解它可能是什么。该奖项在两条道路上解决这个问题:分析现有IceCube数据的新方法,特别是通过与活动星系的毫米波段观测的互相关,其中暗示已经报道,以及为东北太平洋的新中微子望远镜P-ONE开发电子设备。预计P-ONE的角分辨率将比IceCube高4-5倍,将探测到的源的预期数量增加一个数量级,并允许对中微子源进行首次人口研究。此外,P-ONE的峰值灵敏度将在南部天空,不像IceCube,这使得它与我们银河系的研究和大多数下一代电磁观测站(鲁宾,ELT,CMB-S4,SKA,SWGO等)的视野非常匹配。该奖项的预期教育和推广方面包括密歇根州学校的推广,一对增加本科到研究生过渡多样性的计划,以及在研究生和本科阶段教授实验物理学的新计划。此外,该奖项还支持在密歇根州中部的科学教育中心Impression Five科学中心安装一个关于宇宙射线和粒子物理学的新展览,该中心每年吸引近20万名游客。该奖项与NSF的宇宙窗口大创意一致:多信使天体物理学时代,因为它协调使用长波长(mm/cm)的多信使观测该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathan Whitehorn其他文献
Nathan Whitehorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathan Whitehorn', 18)}}的其他基金
Exploring the Time-Varying Universe at Millimeter Wavelengths with the South Pole Telescope
用南极望远镜探索毫米波长的时变宇宙
- 批准号:
1716965 - 财政年份:2018
- 资助金额:
$ 81.1万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
- 批准号:
2308090 - 财政年份:2023
- 资助金额:
$ 81.1万 - 项目类别:
Standard Grant
WoU-MMA: Targeted Search for Binary Mergers with Multiple Harmonics in Gravitational Wave Data
WoU-MMA:引力波数据中多重谐波二元合并的定向搜索
- 批准号:
2309360 - 财政年份:2023
- 资助金额:
$ 81.1万 - 项目类别:
Continuing Grant
RUI: WoU-MMA: VERITAS Analysis Software and Active Galaxy Discovery Science
RUI:WoU-MMA:VERITAS 分析软件和活跃星系发现科学
- 批准号:
2310000 - 财政年份:2023
- 资助金额:
$ 81.1万 - 项目类别:
Standard Grant
WoU-MMA: Operation of the HAWC Gamma Ray Observatory
WoU-MMA:HAWC 伽马射线天文台的运行
- 批准号:
2310104 - 财政年份:2023
- 资助金额:
$ 81.1万 - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: Ultrahigh Energy Neutrinos with the Radio Neutrino Observatory in Greenland
合作研究:WoU-MMA:与格陵兰岛射电中微子观测站的超高能中微子
- 批准号:
2310125 - 财政年份:2023
- 资助金额:
$ 81.1万 - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: Ultrahigh Energy Neutrinos with the Radio Neutrino Observatory in Greenland
合作研究:WoU-MMA:与格陵兰岛射电中微子观测站的超高能中微子
- 批准号:
2310129 - 财政年份:2023
- 资助金额:
$ 81.1万 - 项目类别:
Standard Grant
WoU-MMA: Dwarf AGNs from Variability for the Origins of Seeds (DAVOS)
WoU-MMA:来自种子起源变异的矮 AGN(DAVOS)
- 批准号:
2308077 - 财政年份:2023
- 资助金额:
$ 81.1万 - 项目类别:
Standard Grant
WoU-MMA: Enabling Multimessenger Astrophysics with Pulsar Timing Arrays
WoU-MMA:利用脉冲星定时阵列实现多信使天体物理学
- 批准号:
2309246 - 财政年份:2023
- 资助金额:
$ 81.1万 - 项目类别:
Continuing Grant
Collaborative Research: WoU-MMA: Askaryan Radio Array: A World-Class, Forward-Looking, and Dynamic Neutrino Astrophysics Observatory From 100 PeV
合作研究:WoU-MMA:阿斯卡扬射电阵列:100 PeV 的世界级、前瞻性、动态中微子天体物理观测站
- 批准号:
2310095 - 财政年份:2023
- 资助金额:
$ 81.1万 - 项目类别:
Standard Grant