FRR: Collaborative Research: Unsupervised Active Learning for Aquatic Robot Perception and Control

FRR:协作研究:用于水生机器人感知和控制的无监督主动学习

基本信息

  • 批准号:
    2237577
  • 负责人:
  • 金额:
    $ 39.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-04-15 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Rapid developments in machine learning and artificial intelligence in recent years have greatly advanced perception capabilities and thus the level of autonomy for machines, as evidenced by great strides made in autonomous vehicles and aerial drones over the last decade. These successes are due to advances in computing hardware and large datasets for training learning algorithms. However, for many real-world robotic applications, a robot’s environment may be so complex that no existing datasets are adequate, and synthetically generating high-fidelity data in simulation may not be possible. In such cases a robot will need to collect data in its real operating environment to learn. The robot will need to purposefully plan its motion and interaction with the environment to enable sensors to gather the most informative data. This award supports research to create algorithms for efficient robot active learning for perception and control of complex systems in highly dynamic and uncertain environments, such as the aquatic environment. Advances will have broad implications in applications of robotic technologies, such as aquatic debris cleanup, underwater search and rescue, and personalized minimally invasive robotic surgery. In particular, the team will collaborate with the United States Coast Guard and apply the developed algorithms to improve their search capacities. The goal of this project will be accomplished through the pursuit of three interconnected research thrusts: 1) active learning for building data-driven perception models with multi-sensory data; 2) active learning of models describing temporal evolution of perceptional features for control purposes, using data-driven operators to describe latent dynamics; and 3) experimental demonstration and evaluation with a running case study of autonomous aquatic debris removal using an unmanned surface vehicle equipped with soft sensor-rich robotic arms. This work will advance the fundamental understanding of design principles for learning-based perception models when multiple sensing modalities are involved. The project will moreover develop new theory for learning the evolution of latent features, including convergence guarantees and controllability analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,机器学习和人工智能的快速发展极大地提高了感知能力,从而提高了机器的自主水平,过去十年自动驾驶汽车和无人机取得的巨大进步就是明证。这些成功归功于计算硬件和用于训练学习算法的大型数据集的进步。然而,对于许多真实世界的机器人应用,机器人的环境可能非常复杂,以至于现有的数据集都不足以满足要求,并且在仿真中合成生成高保真数据可能是不可能的。在这种情况下,机器人将需要在其真实的操作环境中收集数据以进行学习。机器人将需要有目的地规划其运动和与环境的交互,以使传感器能够收集最丰富的数据。该奖项支持研究创建有效的机器人主动学习算法,用于在高度动态和不确定的环境中感知和控制复杂系统,例如水环境。这些进步将对机器人技术的应用产生广泛的影响,例如水上碎片清理、水下搜索和救援以及个性化微创机器人手术。特别是,该小组将与美国海岸警卫队合作,并应用开发的算法来提高其搜索能力。 本项目的目标将通过三个相互关联的研究方向来实现:1)利用多传感器数据构建数据驱动感知模型的主动学习; 2)用于控制目的的描述感知特征时间演化的模型的主动学习,使用数据驱动算子来描述潜在动力学;以及3)使用配备有软传感器丰富的机械臂的无人驾驶水面车辆自主清除水中碎片的运行案例研究的实验演示和评估。这项工作将推进基于学习的感知模型的设计原则的基本理解时,涉及多种传感方式。该项目还将开发新的理论,用于学习潜在特征的演变,包括收敛保证和可控性分析。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaobo Tan其他文献

Cycle-to-cycle response of ionic polymer-metal composite materials subject to pulsing flow-induced stimulus
脉冲流诱导刺激下离子聚合物-金属复合材料的周期响应
Diatomological mapping of water bodies in Chongqing section of the Yangtze River and Jialing River
长江、嘉陵江重庆段水体硅藻土测绘
  • DOI:
    10.1007/s00414-020-02297-x
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Li Zhang;Qianyun Nie;Yalei Dai;Shisheng Zhu;Jinbao Wang;Wei Wang;Xiaobo Tan;Peng Zhang;Jianbo Li
  • 通讯作者:
    Jianbo Li
Soft mechatronics: an emerging design paradigm for the conception of intrinsically compliant electro-mechanical systems
软机电一体化:一种新兴的设计范例,用于本质上兼容的机电系统概念
  • DOI:
    10.1007/s11012-015-0307-9
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    G. Berselli;Xiaobo Tan;R. Vertechy
  • 通讯作者:
    R. Vertechy
Evolutionary Design and Experimental Validation of a Flexible Caudal Fin for Robotic Fish
机器鱼柔性尾鳍的进化设计和实验验证
  • DOI:
    10.7551/978-0-262-31050-5-ch043
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Clark;Jared M. Moore;Jianxun Wang;Xiaobo Tan;P. McKinley
  • 通讯作者:
    P. McKinley
Design and analysis of a sliding mode controller for systems with hysteresis
滞环系统滑模控制器的设计与分析

Xiaobo Tan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaobo Tan', 18)}}的其他基金

I-Corps: Autonomous Aquabots for Water Main Inspections
I-Corps:用于水管检查的自主 Aquabot
  • 批准号:
    2345478
  • 财政年份:
    2024
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
NRT-HDR: WaterCube: Big Data Water Science for Sustainability and Equity
NRT-HDR:WaterCube:大数据水科学促进可持续发展和公平
  • 批准号:
    2244164
  • 财政年份:
    2023
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
Collaborative Research: FW-HTF-P: Efficient Inspection of Unpiggable Pipelines through Human-Robot Integration
合作研究:FW-HTF-P:通过人机集成有效检查不可清管的管道
  • 批准号:
    2222635
  • 财政年份:
    2022
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
S&AS: INT: COLLAB: Goal-driven Marine Autonomy with Application to Fisheries Science and Management
S
  • 批准号:
    1848945
  • 财政年份:
    2019
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Information-driven Autonomous Exploration in Uncertain Underwater Environments
RI:小型:协作研究:不确定水下环境中信息驱动的自主探索
  • 批准号:
    1715714
  • 财政年份:
    2017
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
CPS: Synergy: Tracking Fish Movement with a School of Gliding Robotic Fish
CPS:协同作用:用一群滑翔机器鱼跟踪鱼的运动
  • 批准号:
    1446793
  • 财政年份:
    2014
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
Novel Vanadium Dioxide-based Self-Sensing Microactuators: Modeling, Control, and Application to Micromanipulation
新型二氧化钒基自传感微执行器:建模、控制及其在微操作中的应用
  • 批准号:
    1301243
  • 财政年份:
    2013
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Bio-inspired Collaborative Sensing with Novel Gliding Robotic Fish
RI:小型:协作研究:新型滑翔机器鱼的仿生协作传感
  • 批准号:
    1319602
  • 财政年份:
    2013
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Continuing Grant
CyberSEES: Type 2: Towards Sustainable Aquatic Ecosystems: A New Adaptive Sampling and Data-Enabled Monitoring and Modeling Framework
Cyber​​SEES:类型 2:迈向可持续水生生态系统:新的自适应采样和数据支持的监测和建模框架
  • 批准号:
    1331852
  • 财政年份:
    2013
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
AIR Option 1: Technology Translation: Gliding Robotic Fish for Long-duration Sensing in Aquatic Environments
AIR选项1:技术转化:滑翔机器鱼在水生环境中进行长时间传感
  • 批准号:
    1343413
  • 财政年份:
    2013
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348998
  • 财政年份:
    2025
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
  • 批准号:
    2348999
  • 财政年份:
    2025
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
  • 批准号:
    2313120
  • 财政年份:
    2024
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Non-Linearity and Feedbacks in the Atmospheric Circulation Response to Increased Carbon Dioxide (CO2)
合作研究:大气环流对二氧化碳 (CO2) 增加的响应的非线性和反馈
  • 批准号:
    2335762
  • 财政年份:
    2024
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
Collaborative Research: Holocene biogeochemical evolution of Earth's largest lake system
合作研究:地球最大湖泊系统的全新世生物地球化学演化
  • 批准号:
    2336132
  • 财政年份:
    2024
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
Collaborative Research: LTREB: The importance of resource availability, acquisition, and mobilization to the evolution of life history trade-offs in a variable environment.
合作研究:LTREB:资源可用性、获取和动员对于可变环境中生命史权衡演变的重要性。
  • 批准号:
    2338394
  • 财政年份:
    2024
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Continuing Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: Testing Evolutionary Models of Biotic Survival and Recovery from the Permo-Triassic Mass Extinction and Climate Crisis
合作研究:BoCP-实施:测试二叠纪-三叠纪大规模灭绝和气候危机中生物生存和恢复的进化模型
  • 批准号:
    2325380
  • 财政年份:
    2024
  • 资助金额:
    $ 39.69万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了