CAREER: Towards Hierarchical and Provably Safe Control for Learning-Enabled Autonomous Systems

职业:为支持学习的自主系统实现分层且可证明安全的控制

基本信息

  • 批准号:
    2237850
  • 负责人:
  • 金额:
    $ 60.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2028-02-29
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development Program (CAREER) grant will fund research that enhances the reliability, trustworthiness, and societal acceptance of autonomous systems that rely on machine learning-enabled technologies, thereby promoting the progress of science, and advancing the national prosperity and welfare. Autonomous robotic systems, such as self-driving cars and drones, are shaping the nation's future insofar as the transportation, logistics, and service segments of the economy are concerned. Artificial neural networks have become an indispensable component of modern autonomous systems, especially in their perception and control pipelines. However, neural networks are complex, difficult to analyze, and sensitive to input perturbations or adversarial attacks. This renders their rigorous analysis and design very challenging. Thus, despite the continued optimism and tremendous technological progress in recent years, truly autonomous systems remain elusive because of outstanding safety and reliability concerns. This project overcomes these concerns by establishing a rigorous methodological framework and efficient algorithms for the analysis, verification, motion planning, and control design of safety-critical dynamic systems with learning-enabled components. It demonstrates how this framework enables provable performance guarantees for safe and reliable operation. Through close integration of research, education, and outreach, the project aims to leverage knowledge discovery to stimulate teaching and learning, use inspired teaching to encourage excitement in research, and make newly generated knowledge accessible to the public. This is accomplished through active learning-based design of a course on safety control in robotics, by engaging students from underrepresented groups in research and organizing K-12 summer workshops with hands-on robotics activities, and by increasing public literacy, awareness, and trust in safety-related technologies for autonomous systems.This research aims to develop the foundations of a mathematically rigorous framework for the multi-rate and provably safe motion planning and control of autonomous systems with neural network components. It achieves this aim by investigating constrained zonotope- and hybrid zonotope-based algorithms for computing over-approximated reachable sets for neural feedback systems with a tunable trade-off between computational efficiency and approximation accuracy; robust quadratic program-based methods for designing provably safe, periodic event-triggered tracking controllers; second-order cone program-based trajectory planning methods for neural feedback systems with continuous-time safety guarantees; and provably safe multi-rate planning and control algorithms with an assume-guarantee contract between the planning and tracking layers. Verification and validation of the theoretical results will be performed using high-fidelity vehicle dynamics software simulations and with physical experiments on two lab-based robotic platforms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展计划(CAREER)拨款将资助研究,以提高依赖机器学习技术的自主系统的可靠性,可信度和社会接受度,从而促进科学进步,促进国家繁荣和福利。自动驾驶汽车和无人机等自动机器人系统正在塑造国家的未来,涉及运输、物流和服务领域。人工神经网络已成为现代自治系统不可或缺的组成部分,特别是在其感知和控制管道中。然而,神经网络复杂,难以分析,对输入扰动或对抗性攻击敏感。这使得它们的严格分析和设计非常具有挑战性。因此,尽管近年来持续的乐观和巨大的技术进步,真正的自主系统仍然难以捉摸,因为突出的安全性和可靠性问题。该项目通过建立一个严格的方法框架和有效的算法来分析,验证,运动规划和控制设计的安全关键动态系统与学习功能的组件,克服了这些问题。它演示了该框架如何实现安全可靠操作的可证明性能保证。通过研究,教育和推广的紧密结合,该项目旨在利用知识发现来刺激教学和学习,使用启发式教学来鼓励研究的兴奋,并使新产生的知识向公众开放。这是通过积极的学习为基础的机器人安全控制课程的设计,通过参与研究和组织K-12暑期讲习班与动手机器人活动,并通过提高公众素养,认识,和信任的安全相关技术的自主系统。这项研究的目的是发展一个数学上严格的框架的基础,速率和可证明安全的运动规划和控制的自主系统与神经网络组件。它实现了这一目标,通过调查约束zonotope和混合zonotope为基础的算法计算过近似可达集的神经反馈系统与计算效率和近似精度之间的可调权衡;鲁棒二次规划为基础的方法设计可证明安全,周期性事件触发跟踪控制器;基于二阶锥规划的连续时间安全保证神经反馈系统轨迹规划方法以及可证明安全的多速率规划和控制算法,在规划层和跟踪层之间具有假设保证合同。理论结果的验证和确认将使用高保真车辆动力学软件模拟和两个基于实验室的机器人平台上的物理实验来进行。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Backward Reachability Analysis of Neural Feedback Systems Using Hybrid Zonotopes
使用混合区域位的神经反馈系统的后向可达性分析
Safe Control of Euler-Lagrange Systems with Limited Model Information
模型信息有限的欧拉-拉格朗日系统的安全控制
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiangru Xu其他文献

Rapid Development of an Autonomous Vehicle for the SAE AutoDrive Challenge II Competition
为 SAE AutoDrive Challenge II 竞赛快速开发自动驾驶汽车
  • DOI:
    10.4271/2024-01-1980
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sriram Ashokkumar;Anirudh Jayendra;Sam Tobin;Ariel Leykin;Robert Stegeman;Abhiraj Dashora;Bryan Look;Joseph Koenig;Brian Hu;Mason Crooks;Ishaan Mahajan;Pravin Boopathy;Mukund Krishnakumar;Nevindu Batagoda;Han Wang;Aaron Young;Victor Freire;Glenn Bower;Xiangru Xu;D. Negrut
  • 通讯作者:
    D. Negrut
A software toolkit and hardware platform for investigating and comparing robot autonomy algorithms in simulation and reality
用于在仿真和现实中研究和比较机器人自主算法的软件工具包和硬件平台
  • DOI:
    10.48550/arxiv.2206.06537
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Elmquist;Aaron Young;Ishaan Mahajan;Kyle Fahey;Abhiraj Dashora;Sriram Ashokkumar;Stefan Caldararu;Victor Freire;Xiangru Xu;R. Serban;D. Negrut
  • 通讯作者:
    D. Negrut
Carbon stabilization in aggregate fractions responds to straw input levels under varied soil fertility levels
  • DOI:
    org/10.1016/j.still.2020.104593
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
  • 作者:
    Xiangru Xu;Sean Schaeffer;Zhuhe Sun;Jiuming Zhang;Tingting An;Jingkuan Wang
  • 通讯作者:
    Jingkuan Wang
Recent progress in anticancer bioactivity study ofSophora flavescens Ait. and its alkaloids
The role for DNA/RNA methylation on neurocognitive dysfunctions
  • DOI:
    10.1016/b978-0-12-816843-1.00006-0
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiangru Xu
  • 通讯作者:
    Xiangru Xu

Xiangru Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Advanced measurement for unveiling hierarchical quasiparticles towards renovating molecular materials research
揭示分级准粒子的先进测量,以革新分子材料研究
  • 批准号:
    23H05461
  • 财政年份:
    2023
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Towards efficient state estimation in wall-bounded flows: hierarchical adjoint data assimilation
实现壁界流中的有效状态估计:分层伴随数据同化
  • 批准号:
    2332057
  • 财政年份:
    2023
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Standard Grant
CAREER: Studies of Chalcogen Bonding-Mediated Assembly towards Porous Crystalline Frameworks, Hierarchical Assemblies, and Multicomponent Materials
职业:硫族键介导的多孔晶体框架组装、分级组装和多组分材料的研究
  • 批准号:
    2143623
  • 财政年份:
    2022
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Continuing Grant
CAREER: Towards Efficient and Fast Hierarchical Federated Learning in Heterogeneous Wireless Edge Networks
职业:在异构无线边缘网络中实现高效快速的分层联邦学习
  • 批准号:
    2145031
  • 财政年份:
    2022
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Continuing Grant
Towards Hierarchical Autonomous Context-Aware Distributed Clustered Vehicular Ad-hoc Networks (VANET)
迈向分层自治上下文感知分布式集群车载自组织网络 (VANET)
  • 批准号:
    356096-2012
  • 财政年份:
    2017
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Hierarchical Autonomous Context-Aware Distributed Clustered Vehicular Ad-hoc Networks (VANET)
迈向分层自治上下文感知分布式集群车载自组织网络 (VANET)
  • 批准号:
    356096-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Discovery Grants Program - Individual
A new route towards the dynamical mean field theory of strongly correlated nonequilibrium systems based on hierarchical master equation methods
基于分层主方程方法的强相关非平衡系统动态平均场理论的新途径
  • 批准号:
    261975638
  • 财政年份:
    2015
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Research Grants
Towards Hierarchical Autonomous Context-Aware Distributed Clustered Vehicular Ad-hoc Networks (VANET)
迈向分层自治上下文感知分布式集群车载自组织网络 (VANET)
  • 批准号:
    356096-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Hierarchical Autonomous Context-Aware Distributed Clustered Vehicular Ad-hoc Networks (VANET)
迈向分层自治上下文感知分布式集群车载自组织网络 (VANET)
  • 批准号:
    356096-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Discovery Grants Program - Individual
Towards Hierarchical Autonomous Context-Aware Distributed Clustered Vehicular Ad-hoc Networks (VANET)
迈向分层自治上下文感知分布式集群车载自组织网络 (VANET)
  • 批准号:
    356096-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 60.36万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了