CAREER: Towards Data-Driven and Field-Validated Microgrid Modeling and Analysis Techniques

职业:迈向数据驱动和现场验证的微电网建模和分析技术

基本信息

  • 批准号:
    2237886
  • 负责人:
  • 金额:
    $ 52.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

This NSF CAREER project aims to increase the reliability, security, and resiliency of the electric power grid via the use of microgrids. Microgrids are local electric energy systems that can operate with the grid and separate from the grid during emergencies. Microgrids can improve grid resiliency and sustainability, and accelerate disaster recovery. The project will bring transformative change to how microgrids are designed and operated by addressing the gap between theoretical studies and real-world applications. To achieve this goal, state-of-the-art data-driven and machine learning algorithms will be employed. The intellectual merits of the project include developing a new approach to accurately model real-world conditions, using machine learning to reduce model complexity, and creating and field-validating a microgrid stability prediction tool. The broader impacts of the project include an improved method to design and operate microgrids which would reduce implementation costs. By reducing costs, microgrids can be deployed faster in both developing and developed nations. This would quicken the electrification of historically marginalized communities and improve grid resiliency, robustness, and sustainability. The newly created knowledge would be disseminated through hands-on courses and workshops on power engineering. Stability prediction for microgrids require accurate mathematical modeling of the physical system to capture important dynamics and subtleties. Current modeling practices do not account for two critical real-world phenomena, namely, controller saturation and protection action, both of which have drastic effects on system stability. The first technical contribution of this project will address this gap by developing an approach to concurrently model those two phenomena. Additionally, microgrid stability studies are approached through linear or nonlinear techniques. Stability techniques can become too complex due to model order and number of nonlinearities. The second technical contribution will leverage advances in Scientific Machine Learning (SciML) to reduce a system’s model order by creating surrogates. The third technical contribution will be a microgrid stability prediction tool using SciML that will predict transient stability under different operating conditions and design factors. Data from an industry-grade microgrid and real-world equipment will be used to tune and confirm the accuracy of those surrogates and tools.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个NSF CAREER项目旨在通过使用微电网来提高电网的可靠性,安全性和弹性。微电网是一种本地电能系统,可以与电网一起运行,并在紧急情况下与电网分离。微电网可以提高电网弹性和可持续性,并加快灾难恢复。该项目将通过解决理论研究和实际应用之间的差距,为微电网的设计和运营带来革命性的变化。为了实现这一目标,将采用最先进的数据驱动和机器学习算法。该项目的智力优势包括开发一种新的方法来准确地模拟现实世界的条件,使用机器学习来降低模型的复杂性,以及创建和现场验证微电网稳定性预测工具。该项目更广泛的影响包括改进微电网的设计和运营方法,从而降低实施成本。通过降低成本,微电网可以在发展中国家和发达国家更快地部署。这将加快历史上被边缘化的社区的电气化,并提高电网的弹性,稳健性和可持续性。新创造的知识将通过关于电力工程的实践课程和讲习班传播。微电网的稳定性预测需要对物理系统进行精确的数学建模,以捕捉重要的动态和微妙之处。目前的建模实践不考虑两个关键的现实世界的现象,即,控制器饱和和保护动作,这两者都对系统的稳定性有巨大的影响。该项目的第一个技术贡献将通过开发一种同时模拟这两种现象的方法来解决这一差距。此外,微电网稳定性研究是通过线性或非线性技术。由于模型阶数和非线性的数量,稳定性技术可能变得过于复杂。第二个技术贡献将利用科学机器学习(SciML)的进步,通过创建代理来减少系统的模型阶数。第三个技术贡献将是使用SciML的微电网稳定性预测工具,该工具将预测不同操作条件和设计因素下的暂态稳定性。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mahmoud Kabalan其他文献

Integration of renewable energy resources from the perspective of the Midcontinent Independent System Operator: A review
从中部大陆独立系统运营商的角度来看可再生能源资源整合:回顾
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tam Kemabonta;Mahmoud Kabalan
  • 通讯作者:
    Mahmoud Kabalan
Large-signal Stability Analysis of Grid-connected Droop-controlled Inverter with Saturable Power Controller
饱和功率控制器并网下垂控制逆变器大信号稳定性分析
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Hurayb;D. Niebur;Mahmoud Kabalan
  • 通讯作者:
    Mahmoud Kabalan
Optimizing a virtual impedance droop controller for parallel inverters
优化并联逆变器的虚拟阻抗下垂控制器
Minnesota, microgrids and MISO: Getting down to brass tacks on utilizing utility owned/operated microgrids (UOMs) in organized electricity markets
  • DOI:
    10.1016/j.tej.2020.106732
  • 发表时间:
    2020-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tam Kemabonta;Greg Mowry;Mahmoud Kabalan
  • 通讯作者:
    Mahmoud Kabalan
Small-Signal Stability of Islanded-Microgrids with DC Side Dynamics of Inverters and Saturation of Current Controllers
具有逆变器直流侧动态和电流控制器饱和的孤岛微电网的小信号稳定性

Mahmoud Kabalan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
  • 批准号:
    2408964
  • 财政年份:
    2023
  • 资助金额:
    $ 52.98万
  • 项目类别:
    Continuing Grant
CAREER: Towards the Next Generation of Data-Driven and Performance-Based Multiscale Procedures in Mining Geotechnics
职业生涯:迈向采矿岩土工程中的下一代数据驱动和基于性能的多尺度程序
  • 批准号:
    2145092
  • 财政年份:
    2022
  • 资助金额:
    $ 52.98万
  • 项目类别:
    Standard Grant
CAREER: Multi-scale Mechanical Behavior of Quantum Dot Nanocomposites: Towards Data-driven Automatic Discovery of High-performance Structures
职业:量子点纳米复合材料的多尺度机械行为:迈向数据驱动的高性能结构的自动发现
  • 批准号:
    2145604
  • 财政年份:
    2022
  • 资助金额:
    $ 52.98万
  • 项目类别:
    Standard Grant
CAREER: Towards Reliable Operating Systems through Scalable Control- and Data-Flow Analysis
职业:通过可扩展的控制和数据流分析实现可靠的操作系统
  • 批准号:
    2145888
  • 财政年份:
    2022
  • 资助金额:
    $ 52.98万
  • 项目类别:
    Continuing Grant
CAREER: Towards attack-resilient cyber-physical smart grids: moving target defense for data integrity attack detection, identification and mitigation
职业:迈向抗攻击的网络物理智能电网:用于数据完整性攻击检测、识别和缓解的移动目标防御
  • 批准号:
    2146156
  • 财政年份:
    2022
  • 资助金额:
    $ 52.98万
  • 项目类别:
    Continuing Grant
CAREER: Towards Harnessing the Motility of Microorganisms: Fast Algorithms, Data-Driven Models, and 3D Interactive Visual Computing
职业:利用微生物的运动性:快速算法、数据驱动模型和 3D 交互式视觉计算
  • 批准号:
    2146191
  • 财政年份:
    2022
  • 资助金额:
    $ 52.98万
  • 项目类别:
    Continuing Grant
CAREER: Modeling Group Human-Robot Interactions: Towards A Unified Data-Driven Perspective
职业:对群体人机交互进行建模:迈向统一的数据驱动视角
  • 批准号:
    2143109
  • 财政年份:
    2022
  • 资助金额:
    $ 52.98万
  • 项目类别:
    Continuing Grant
CAREER: Towards a Data-driven Understanding of Online Sentiment
职业:以数据驱动的方式理解网络情绪
  • 批准号:
    2046590
  • 财政年份:
    2021
  • 资助金额:
    $ 52.98万
  • 项目类别:
    Continuing Grant
CAREER: Towards Exploratory Data Science on Spatio-temporal Big Data
职业:走向时空大数据的探索性数据科学
  • 批准号:
    2046236
  • 财政年份:
    2021
  • 资助金额:
    $ 52.98万
  • 项目类别:
    Continuing Grant
CAREER: Towards Reliable and Optimized Data-Driven Cyber-Physical Systems using Human-Centric Sensing
职业:利用以人为本的传感实现可靠且优化的数据驱动的网络物理系统
  • 批准号:
    2131622
  • 财政年份:
    2021
  • 资助金额:
    $ 52.98万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了