CAREER: Electro-Chemo-Mechanics of Multiscale Active Materials for Next-Generation Energy Storage

职业:用于下一代储能的多尺度活性材料的电化学力学

基本信息

  • 批准号:
    2237990
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2028-08-31
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant will support integrated research, education, and outreach efforts to advance the field of mechanics for energy storage materials. In modern society, rechargeable batteries dominate the energy storage landscape, from portable electronics to electric vehicles. However, current microparticle-based battery technologies are insufficient for efficient, affordable, and safe energy storage. Advances in nanotechnology have spurred interest in deploying nanoparticles as battery electrodes. However, there are problems associated with nanoparticles that need to be overcome before the battery industry would use them over microparticles. A way forward lies in utilizing multiscale active materials to leverage the advantages of both worlds (micro and nano). The goal of this research is to gain fundamental knowledge of the interrelated electrical, chemical, and mechanical behaviors of multiscale active materials. These materials incorporate microscale particles with built-in nanoscale features. This project will develop an integrated atomistic simulation and machine learning framework to discover the optimal multiscale active materials for next-generation energy storage, which is urgently needed to advance the US economy, prosperity, welfare, and defense. The integrated outreach and educational activities will provide research opportunities for underrepresented community college students in partnership with the Louis Stokes Alliances for Minority Participation program. Workshops for elementary teacher trainees will provide STEM content to promote science among lower-grade students. Additionally, free online workshops related to this research will benefit the worldwide mechanics research community. Nanomaterials-based battery electrodes offer several advantages: high rate, power density, gravimetric capacity, superior fracture toughness, and fatigue resistance. However, the industry has been resistant to replace microstructured electrodes with nanostructured counterparts. Nanomaterials-based batteries have low volumetric capacity, reduced coulombic efficiency, and high cost. The transformative solution to address this issue lies in multiscale active materials. These materials can be either engineered (assembly of nanoparticles into microparticles) or natural (micrometer-scale materials naturally endowed with nanoscale tunnels). However, various computational and experimental challenges have impeded research progress in this area. This project aims to overcome these challenges through four integrated objectives: (i) studying the interfacial mechanics in engineered multiscale materials, (ii) determining electrode/electrolyte stability and solid electrolyte interface formation, (iii) investigating stress, fracture, and voltage variation within electrodes during charge/discharge cycles, and (iv) utilizing data from the first three objectives to train recently developed Modified High Dimensional Neural Networks for novel multiscale materials exploration. The Non-Local Long-Range Charge Transfer will be implemented for accurate charge calculation and correct force and stress analysis. Tasks will be experimentally validated with colleagues. The project will generate fundamental knowledge to advance the field of mechanics of energy storage materials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这笔学院早期职业发展(Career)补助金将支持综合研究、教育和推广工作,以促进储能材料力学领域的发展。在现代社会,从便携式电子产品到电动汽车,可充电电池主导着能源储存领域。然而,目前基于微粒的电池技术不足以实现高效、负担得起和安全的能量存储。纳米技术的进步激发了人们将纳米颗粒用作电池电极的兴趣。然而,在电池行业将纳米颗粒用于微粒之前,还有一些与纳米颗粒相关的问题需要克服。一个前进的方向是利用多尺度的活性材料来利用两个世界(微米和纳米)的优势。这项研究的目标是获得多尺度活性材料相互关联的电、化学和机械行为的基础知识。这些材料结合了具有内置纳米级特征的微米级颗粒。该项目将开发一个集成的原子模拟和机器学习框架,以发现下一代储能所急需的最佳多尺度活性材料,这是促进美国经济、繁荣、福利和国防所急需的。综合外展和教育活动将与路易斯·斯托克斯少数族裔参与联盟计划合作,为代表不足的社区学院学生提供研究机会。为小学教师实习生举办的讲习班将提供STEM内容,在低年级学生中推广科学。此外,与这项研究相关的免费在线研讨会将使全球力学研究社区受益。基于纳米材料的电池电极具有几个优点:高倍率、功率密度、重量容量、优异的断裂韧性和抗疲劳性能。然而,该行业一直抵制用纳米结构电极取代微结构电极。基于纳米材料的电池体积容量低,库仑效率降低,成本高。解决这一问题的变革性解决方案在于多尺度活性材料。这些材料既可以是工程制造的(将纳米颗粒组装成微粒子),也可以是天然的(微米级的材料自然具有纳米级的隧道)。然而,各种计算和实验挑战阻碍了这一领域的研究进展。该项目旨在通过四个综合目标来克服这些挑战:(I)研究工程多尺度材料中的界面力学;(Ii)确定电极/电解质的稳定性和固体电解质界面的形成;(Iii)研究充放电循环期间电极内的应力、断裂和电压变化;以及(Iv)利用前三个目标的数据来训练最近发展起来的用于新的多尺度材料探索的改进的高维神经网络。非局部远程电荷转移将用于精确的电荷计算和正确的力和应力分析。任务将与同事一起进行实验验证。该项目将产生促进储能材料力学领域发展的基础知识。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Exploring Thermal Transport in Electrochemical Energy Storage Systems Utilizing Two-Dimensional Materials: Prospects and Hurdles
  • DOI:
    10.1615/annualrevheattransfer.2023049365
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dibakar Datta;Eon Soo Lee
  • 通讯作者:
    Dibakar Datta;Eon Soo Lee
Unlocking the Potential of Open-Tunnel Oxides: DFT-Guided Design and Machine Learning-Enhanced Discovery for Next- Generation Industry-Scale Battery Technologies
释放开放式隧道氧化物的潜力:DFT 引导设计和机器学习增强发现下一代工业规模电池技术
  • DOI:
    10.1039/d4ya00014e
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Datta, Joy;Koratkar, Nikhil;Datta, Dibakar
  • 通讯作者:
    Datta, Dibakar
Effects of Graphene Interface on Potassiation in a Graphene–Selenium Heterostructure Cathode for Potassium-Ion Batteries
  • DOI:
    10.1021/acsaem.3c00989
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Vidushi Sharma;D. Datta
  • 通讯作者:
    Vidushi Sharma;D. Datta
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dibakar Datta其他文献

Mechanical properties of graphene grain boundary and hexagonal boron nitride lateral heterostructure with controlled domain size
可控畴尺寸的石墨烯晶界和六方氮化硼横向异质结构的力学性能
  • DOI:
    10.1016/j.commatsci.2016.06.026
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Anran Wei;Yinfeng Li;Dibakar Datta;Hui Guo;Ziang Lv
  • 通讯作者:
    Ziang Lv
Nano-silica electrolyte additive enables dendrite suppression in an anode-free sodium metal battery
  • DOI:
    10.1016/j.nanoen.2024.110010
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reena A. Panchal;Joy Datta;Vrushali Varude;Kevin Bhimani;Varad Mahajani;Mithil Kamble;Apurva Anjan;Rohit M. Manoj;R. Helen Zha;Dibakar Datta;Nikhil Koratkar
  • 通讯作者:
    Nikhil Koratkar
Thermal characteristics of graphene nanoribbons endorsed by surface functionalization
表面功能化支持的石墨烯纳米带的热特性
  • DOI:
    10.1016/j.carbon.2016.11.067
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Yinfeng Li;Anran Wei;Dibakar Datta
  • 通讯作者:
    Dibakar Datta
The roles of MXenes in developing advanced lithium metal anodes
MXenes 在开发先进锂金属负极中的作用
  • DOI:
    10.1016/j.jechem.2022.01.011
  • 发表时间:
    2022-06-01
  • 期刊:
  • 影响因子:
    14.900
  • 作者:
    Nicolas Lucero;Dayannara Vilcarino;Dibakar Datta;Meng-Qiang Zhao
  • 通讯作者:
    Meng-Qiang Zhao

Dibakar Datta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dibakar Datta', 18)}}的其他基金

Collaborative Research: Fundamental Study of Niobium Tungsten Oxide Anodes for High-Performance Aqueous Batteries
合作研究:高性能水系电池用铌钨氧化物阳极的基础研究
  • 批准号:
    2126180
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Roll-to-Roll Atomic Layer Deposition of Selenium-based Battery Cathodes
GOALI/合作研究:硒基电池阴极的卷对卷原子层沉积
  • 批准号:
    1911900
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

蒽醌/石墨烯纳米复合材料电极的电催化氧还原性能及其在异相electro-Fenton-like体系中的应用研究
  • 批准号:
    21177017
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of the Multiscale and Multi-electro-chemo-mechanical Lifecycle Evaluation Method of Impressed Current Cathodic Protection Applied to Reinforced Concrete Structures
钢筋混凝土结构外加电流阴极保护多尺度、多电化学-机械生命​​周期评价方法的发展
  • 批准号:
    23K19134
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Next Generation Electro-Chemo-Mechanical Models for Hydrogen Embrittlement (NEXTGEM)
下一代氢脆电化学机械模型 (NEXTGEM)
  • 批准号:
    EP/V009680/2
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Next Generation Electro-Chemo-Mechanical Models for Hydrogen Embrittlement (NEXTGEM)
下一代氢脆电化学机械模型 (NEXTGEM)
  • 批准号:
    EP/V009680/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
CAREER: Electro-Chemo-Mechanics of Li and Na Metal: Toward Dendrite- and Damage-Free Metallic Anodes of Rechargeable Batteries
职业:锂和钠金属的电化学力学:研究可充电电池的无枝晶和无损伤金属阳极
  • 批准号:
    1944674
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Nano Electro-chemo-mechanics and Interfacial Stability in All-solid-state Lithium Battery
职业:全固态锂电池中的纳米电化学力学和界面稳定性
  • 批准号:
    1942554
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Electro-Chemo-Mechanics of Polymer/Active Material Interface Fracture
职业:聚合物/活性材料界面断裂的电化学力学
  • 批准号:
    2026717
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: The Role of Heterogeneities in Electro-Chemo-Mechanics of Electrodes and Interfaces
职业:异质性在电极和界面电化学力学中的作用
  • 批准号:
    1943946
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NSF/DMR-BSF: Understanding Electro-Chemo-Mechanical Processes at the Atomic Level
NSF/DMR-BSF:了解原子水平上的电化学机械过程
  • 批准号:
    1911592
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Multiscale modeling of the impact of dislocations on the electro-chemo-mechanical behavior of lithium-ion battery electrodes
位错对锂离子电池电极电化学机械行为影响的多尺度建模
  • 批准号:
    398072825
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grants
CAREER: Electro-Chemo-Mechanics of Polymer/Active Material Interface Fracture
职业:聚合物/活性材料界面断裂的电化学力学
  • 批准号:
    1652409
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了