CAREER: Quantum silicon phononics: Harnessing long-lived phonons for memories and interconnects

职业:量子硅声学:利用长寿命声子进行存储器和互连

基本信息

  • 批准号:
    2238058
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-02-15 至 2028-01-31
  • 项目状态:
    未结题

项目摘要

Over the last two decades, quantum technologies have progressed steadily, promising solutions to a wide range of applications in computation, communication, and sensing. The bulk of efforts in developing physical platforms for quantum technologies has so far focused on photons as carriers of quantum information and atomic and solid-state qubits for storing and processing quantum information. Phonons, the quanta of energy in vibrations in solid-state materials, have recently emerged as a viable resource for quantum technologies. Due to their ability to interact with a wide range of systems, phonons can serve as interconnects to pass quantum signals from the electrical domain, where quantum computers are likely to operate, to the optical domain, where optical fibers enable long-distance quantum communication. Additionally, phonons can be well isolated from their environments in nano-engineered devices, potentially providing memory elements for storing quantum states. Developing these physical properties into experimental capabilities and, subsequently, a technological advantage requires methods of interfacing mechanical devices with other quantum hardware platforms. This project aims to create scalable, chip-scale optical and electrical quantum interfaces to long-lived mechanical resonators. Furthermore, the project aims to assess the practical benefits of the developed interfaces by using them in experimental demonstrations that create quantum entanglement between electrical, optical, and mechanical quantum devices.GHz-frequency acoustic resonators made from single-crystal silicon offer the unique properties of exceptionally low loss (reaching 50-billion quality factors at low temperatures) and the ease of interfacing with telecom-band optical photons. However, while quantum manipulations of phonons have been previously demonstrated with piezoelectric coupling to superconducting qubits, the absence of piezoelectricity in silicon forbids direct integration with qubits. This project aims to overcome this challenge by developing new mechanisms for electromechanical coupling of GHz-frequency mechanical resonators with superconducting qubits and cavity optomechanical systems in a monolithic silicon-on-insulator platform. To achieve this goal, the project will develop electrostatic transducers based on phononic crystals and high-impedance microwave cavities based on kinetic inductance in disordered superconductors. Integrating these components, the PI aims to realize full quantum control of electromechanical resonators with transmon qubits and demonstrate electro-optomechanical conversion of microwave photons to optical photons. The absence of lossy piezoelectric materials and the reliance on light-resistant superconductors in this approach is expected to translate to exceptionally long mechanical lifetimes and orders-of-magnitude improvement in the efficiency of microwave-to-optical frequency conversion. The project aims to take benefit of these improvements for demonstrating quantum entangling operations in a lab-scale hybrid network made from transmon qubits (acting as processors), phononic crystal resonators (memory elements), and telecommunication band photons (interconnects). Demonstrating such a hybrid quantum network would be essential for future real-world applications in providing secure remote access to quantum computing clouds, distributed quantum computing, and quantum-enabled sensing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的二十年里,量子技术稳步发展,为计算、通信和传感领域的广泛应用提供了有前途的解决方案。到目前为止,开发量子技术物理平台的大部分努力都集中在光子作为量子信息的载体以及用于存储和处理量子信息的原子和固态量子比特上。声子是固态材料中振动的能量量子,最近已成为量子技术的可行资源。由于它们能够与各种系统相互作用,声子可以作为互连,将量子信号从量子计算机可能运行的电域传递到光纤实现长距离量子通信的光域。此外,声子可以很好地与纳米工程器件中的环境隔离,从而可能提供用于存储量子态的存储元件。将这些物理特性发展成实验能力,并随后发展成技术优势,需要将机械设备与其他量子硬件平台连接起来的方法。该项目旨在为长寿命的机械谐振器创建可扩展的芯片级光和电量子接口。此外,该项目旨在通过在实验演示中使用它们来评估所开发接口的实际好处,这些实验演示在电,光,由单晶硅制成的GHz频率声学谐振器具有极低损耗的独特性能,(在低温下达到500亿质量因子)以及与电信波段光子接口的容易性。然而,虽然声子的量子操纵先前已经通过压电耦合到超导量子比特来证明,但硅中压电的缺乏禁止与量子比特直接集成。该项目旨在通过开发GHz频率机械谐振器与超导量子位和腔体光机械系统在单片绝缘体上硅平台中的机电耦合新机制来克服这一挑战。为了实现这一目标,该项目将开发基于声子晶体的静电换能器和基于无序超导体中的动力学电感的高阻抗微波腔。集成这些组件,PI旨在实现具有transmon量子位的机电谐振器的全量子控制,并演示微波光子到光学光子的电光机械转换。在这种方法中,没有有损压电材料和对耐光超导体的依赖,预计将转化为非常长的机械寿命和微波-光频率转换效率的数量级改进。该项目旨在利用这些改进来演示实验室规模的混合网络中的量子纠缠操作,该网络由transmon量子比特(充当处理器),声子晶体谐振器(存储元件)和电信波段光子(互连)组成。展示这样一个混合量子网络对于未来的现实世界应用至关重要,可以提供对量子计算云、分布式量子计算和量子传感的安全远程访问。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mohammad Mirhosseini其他文献

Long-lifetime phonons converse with microwave photons
长寿命声子与微波光子对话
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    19.6
  • 作者:
    Mohammad Mirhosseini;A. Bozkurt
  • 通讯作者:
    A. Bozkurt
Quantum-enabled continuous microwave-to-optics frequency conversion
支持量子的连续微波到光学频率转换
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han Zhao;William David Chen;Abhishek Kejriwal;Mohammad Mirhosseini
  • 通讯作者:
    Mohammad Mirhosseini
Distributed angular double-slit interference with pseudo-thermal light
赝热光的分布式角度双缝干涉
  • DOI:
    10.1063/1.4976575
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lu Gao;Seyed Mohammad Hashemi Rafsanjani;Yiyu Zhou;Zhe Yang;Omar S. Maga-Loaiza;Mohammad Mirhosseini;Jiapeng Zhao;Boshen Gao;Robert W. Boyd
  • 通讯作者:
    Robert W. Boyd
Quantum-enabled microwave-to-optical transduction via silicon nanomechanics
基于硅纳米机械结构的量子微波到光的转换
  • DOI:
    10.1038/s41565-025-01874-8
  • 发表时间:
    2025-03-13
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Han Zhao;William David Chen;Abhishek Kejriwal;Mohammad Mirhosseini
  • 通讯作者:
    Mohammad Mirhosseini
Analysis of Shear Wall Systems Using Plane Stress Elements

Mohammad Mirhosseini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Dopant-based Quantum Technologies in Silicon
硅中基于掺杂剂的量子技术
  • 批准号:
    EP/Z531236/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
On-chip nuclear spin qubit platform based on individual erbium-167 ions in silicon photonic nanocavities for quantum repeaters
用于量子中继器的基于硅光子纳米腔中单个铒 167 离子的片上核自旋量子位平台
  • 批准号:
    23K26580
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
On-chip nuclear spin qubit platform based on individual erbium-167 ions in silicon photonic nanocavities for quantum repeaters
用于量子中继器的基于硅光子纳米腔中单个铒 167 离子的片上核自旋量子位平台
  • 批准号:
    23H01887
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线
  • 批准号:
    EP/X039757/1
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Silicon-based Quantum Optimisation in the Parity Architecture
奇偶校验架构中的硅基量子优化
  • 批准号:
    10085042
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Small Business Research Initiative
Silicon Nitride for Quantum Computing (SiNQ)
用于量子计算的氮化硅 (SiNQ)
  • 批准号:
    10074567
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Feasibility Studies
EAGER: Quantum Manufacturing: Robust Atom-based Silicon Quantum Devices
EAGER:量子制造:强大的基于原子的硅量子器件
  • 批准号:
    2240337
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Nanophotonics for telecom quantum networks based on neutral silicon vacancy centers in diamond
基于金刚石中性硅空位中心的电信量子网络纳米光子学
  • 批准号:
    545932-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了