EAGER: Quantum Manufacturing: Robust Atom-based Silicon Quantum Devices
EAGER:量子制造:强大的基于原子的硅量子器件
基本信息
- 批准号:2240337
- 负责人:
- 金额:$ 29.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This EArly-concept Grant for Exploratory Research (EAGER) Quantum Manufacturing award supports research to expand manufacturing processes for semiconductor electronic and quantum devices by advancing the science needed to manufacture devices down to the size-scale approaching single atoms. The results of this research will enable manufacturing of semiconductor devices at size scales not possible today, advancing national prosperity and security. A scanning tunneling microscope is used as a fabrication tool to deterministically place individual phosphorus dopant atoms in silicon with near lattice site perfection. Atomic-scale gates and leads for few atom transistors, dopant-based few-atom qubit devices and dopant arrays for analog quantum simulation can now be fabricated for scientific experiments. The exact positions of dopants play an essential role in device performance, driving the need for atomic perfection. Current imprecision in dopant concentration or dopant position still prevents robust manufacturing. Atom-based silicon quantum devices have generated excitement because they promise to provide the smallest, most dense quantum devices while still leveraging the power of traditional silicon electronics. Robust atom-based silicon quantum devices require advanced manufacturing with precise control over the number and precision of dopant placement. The work here will push traditional nanoscale manufacturing science toward robust atom-scale manufacturing where silicon-based devices can be routinely fabricated atom-by-atom. The research will accelerate manufacturing into the realm of atom-scale devices. Developing robust manufacturing of atom-scale solid state quantum devices will help address the critical national need for successful quantum platforms that can be integrated with conventional electronics.Feedback-controlled lithography was developed to allow atom-scale perfect placement of an individual phosphorus (P) dopant on silicon (Si). This research will advance from one-time demonstrations of perfect placement to robust precise placement of individual atoms that can be used to manufacture atom-scale solid-state Si devices. Perfect placement will be extended to acceptors like boron (B). This additional capability will provide a wider class of quantum devices that can be manufactured and exploited. Density functional theory will be used to simulate scanning tunneling images and determine preferred adsites for B2H6 and its breakdown species. A similar catalog of images will be generated for two-donor and two-acceptor structures. The catalogs will be used to identify deposited structures and new feedback control will be developed to ensure precise placement of B acceptors and multi-dopant structures. Transport and related experiments on these devices will be performed and compared to theory to verify the precision fabrication of atom geometries as designed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
EARLY概念探索性研究(EAGER)量子制造奖支持研究,通过推进制造设备所需的科学,将设备的尺寸缩小到接近单原子的规模,来扩大半导体电子和量子设备的制造工艺。这项研究的结果将使半导体器件的制造规模在今天是不可能的,促进国家的繁荣和安全。使用扫描隧道显微镜作为制造工具,以确定性地将单个磷掺杂剂原子放置在具有接近晶格位置完美性的硅中。现在可以为科学实验制造用于少原子晶体管的原子级栅极和引线、基于掺杂剂的少原子量子比特器件和用于模拟量子模拟的掺杂剂阵列。掺杂剂的确切位置在器件性能中起着至关重要的作用,推动了对原子完美性的需求。目前掺杂剂浓度或掺杂剂位置的不精确性仍然妨碍稳健的制造。基于原子的硅量子器件已经引起了人们的兴奋,因为它们有望提供最小,最密集的量子器件,同时仍然利用传统硅电子器件的功率。稳健的基于原子的硅量子器件需要先进的制造,对掺杂剂放置的数量和精度进行精确控制。这项工作将推动传统的纳米级制造科学走向强大的原子级制造,在原子级制造中,硅基器件可以按原子顺序进行常规制造。这项研究将加速制造进入原子级设备的领域。发展原子级固态量子器件的稳健制造将有助于满足国家对成功的量子平台的关键需求,这些量子平台可以与传统电子器件集成。反馈控制光刻技术的发展允许在硅(Si)上原子级完美地放置单个磷(P)掺杂剂。这项研究将从一次性的完美放置演示推进到可用于制造原子级固态Si器件的单个原子的鲁棒精确放置。完美的位置将扩展到像硼(B)这样的受体。这种额外的能力将提供更广泛的量子设备,可以制造和利用。密度泛函理论将被用来模拟扫描隧道图像,并确定B2H6及其击穿物种的首选吸附位点。将为双供体和双受体结构生成类似的图像目录。目录将用于识别沉积结构,并将开发新的反馈控制,以确保B受体和多掺杂剂结构的精确放置。将在这些设备上进行运输和相关实验,并与理论进行比较,以验证原子几何形状的精确制造。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Garnett Bryant其他文献
Garnett Bryant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Garnett Bryant', 18)}}的其他基金
Collaborative Research: Spin Physics `by design' in quantum dot molecules
合作研究:量子点分子中“设计”的自旋物理
- 批准号:
1505628 - 财政年份:2015
- 资助金额:
$ 29.24万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Quantum Manufacturing: Supporting Future Quantum Applications by Developing a Robust, Scalable Process to Create Diamond Nitrogen-Vacancy Center Qubits
EAGER:量子制造:通过开发稳健、可扩展的工艺来创建钻石氮空位中心量子位,支持未来的量子应用
- 批准号:
2242049 - 财政年份:2023
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Monolithic integration of telecommunication-band quantum emitters in the 4H-SiC-on-insulator platform
EAGER:量子制造:电信频段量子发射器在绝缘体上 4H-SiC 平台中的单片集成
- 批准号:
2240420 - 财政年份:2023
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Scaling Quantum Photonic Circuits with Integrated Superconducting Detectors by 100×
EAGER:量子制造:使用集成超导探测器将量子光子电路扩展 100 倍
- 批准号:
2240501 - 财政年份:2023
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
- 批准号:
2240246 - 财政年份:2023
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Scalable Manufacturing of Molecular Qubit Arrays Using Self-assembled DNA
EAGER:量子制造:使用自组装 DNA 进行分子量子位阵列的可扩展制造
- 批准号:
2240309 - 财政年份:2023
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Quantum Manufacturing: Vertical Coupling and Cross-Talk Shielding of Superconducting Quantum Devices
合作研究:EAGER:量子制造:超导量子器件的垂直耦合和串扰屏蔽
- 批准号:
2240245 - 财政年份:2023
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Manufacturing Integrated Quantum Sensing and Quantum Photonic Technologies Through Direct Bonding of Diamond Membranes
EAGER:量子制造:通过直接粘合金刚石膜制造集成量子传感和量子光子技术
- 批准号:
2240399 - 财政年份:2023
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Three-Dimensional Printing of Meta-Photonic Elements for Chip-based Quantum Devices
EAGER:量子制造:基于芯片的量子器件的元光子元件的三维打印
- 批准号:
2240414 - 财政年份:2023
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing: Atomic-layer Etching Manufacturing Processes for High Performance Superconducting Quantum Devices
EAGER:量子制造:高性能超导量子器件的原子层蚀刻制造工艺
- 批准号:
2234390 - 财政年份:2023
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant
EAGER: Quantum Manufacturing "Scalable integration of ion-photon quantum information converters (IP-QIC) on fiber for networking and computing applications"
EAGER:量子制造“离子光子量子信息转换器(IP-QIC)在光纤上的可扩展集成,用于网络和计算应用”
- 批准号:
2240227 - 财政年份:2023
- 资助金额:
$ 29.24万 - 项目类别:
Standard Grant