Dopant-based Quantum Technologies in Silicon

硅中基于掺杂剂的量子技术

基本信息

  • 批准号:
    EP/Z531236/1
  • 负责人:
  • 金额:
    $ 161.72万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Quantum technologies have seen considerable development over the last decade and there are now several material platforms available in which a small number of qubits can be operated; such as those based on trapped ions, superconducting, or semiconductor materials. Of these, one of the most promising current qubit implementations are dopant spins in silicon. The coherent times of electron and nuclear spins in silicon routinely exceeds milliseconds and seconds, respectively. At the same time, the silicon platform benefits from being able to build on the expertise and fabrication facilities of the semiconductor industry. Nevertheless, using semiconductor materials as a platform for solid-state qubits comes with its own unique challenges that are different from even state-of-the art-classical silicon technology. For example, unlike semiconductor chips found in classical electronics, spin qubits are susceptible to even the smallest magnetic field fluctuations, are sensitive to charge fluctuations via spin-to-charge coupling pathways such as spin-orbit or exchange coupling, and typically require operation at cryogenic temperatures. To develop dopant spins in silicon into a viable and scalable technology that would benefit society still requires a number of step changes and sustained investment from academic and industry partners. Here, we will therefore bring together a network of people from both UK and overseas universities, as well as many industry collaborators, which are uniquely suited to address these challenges.Of the key capabilities that our network of people brings, the first is the ability to fabricate dopant devices with atomic precision (UCL). Internationally there are very few groups with this expertise, and in some aspects, such as the incorporation of As dopants in silicon, our expertise is truly unique. To assess the devices requires mK transport measurements to establish key metrics such as quantum coherence and gate fidelities. Here we bring together several groups (UCL, Sydney) which have a long track record in this regard, as well as the required theoretical underpinning in terms of benchmarking and quantum error correction (Sydney, McGill). Still, for a full understanding of the device performance it is essential to understand and, quite literally, map out the performance of the quantum devices with energy and spatial resolution not possible with any conventional technology. In our network, we have the capability to combine the transport measurements with mK scanning gate mapping of the device (Cambridge) and single-electron sensitivity on the nm scale (McGill). The work will be brought together in two work packages, the first focussing on building the required qubit fabrication and device structures, whereas the second work package will focus on creating entanglement between physically separated qubit.Combining these key capabilities and research efforts into a single network allows us to go significantly beyond the current state of the art in terms of quantum device development and characterisation such that reliable and viable prototypes can be built. Looking beyond the first prototypes the network will also be working on the scalability of the platform, both in terms of device fabrication (UCL) and the required - classical cryogenic - control electronics (Sydney). An additional benefit is that the research group is strongly integrated with industrial leaders, in terms of data acquisition, materials characterisation and hardware and software development. To ensure our research will reach a wide audience and be available to all relevant stakeholders we will have a dedicated outreach programme (Sydney lead).
量子技术在过去十年中取得了长足的发展,现在有几种材料平台可以操作少量量子位;例如那些基于捕获离子、超导或半导体材料的技术。其中,目前最有前途的量子比特实现之一是硅中的掺杂自旋。硅中电子和核自旋的相干时间通常分别超过几毫秒和几秒钟。与此同时,硅平台受益于能够建立在半导体行业的专业知识和制造设施之上。然而,使用半导体材料作为固态量子比特的平台有其独特的挑战,甚至不同于最先进的经典硅技术。例如,与经典电子学中的半导体芯片不同,自旋量子位对最小的磁场波动都很敏感,对通过自旋-电荷耦合途径(如自旋轨道或交换耦合)产生的电荷波动很敏感,并且通常需要在低温下操作。要将硅中的掺杂自旋发展成为一种可行的、可扩展的、有益于社会的技术,仍然需要学术界和工业界合作伙伴的一系列步骤改变和持续投资。因此,在这里,我们将汇集来自英国和海外大学的人才网络,以及许多行业合作者,他们非常适合应对这些挑战。在我们的人员网络带来的关键能力中,首先是制造具有原子精度(UCL)的掺杂器件的能力。在国际上,拥有这种专业知识的团队很少,在某些方面,例如在硅中掺入砷掺杂剂,我们的专业知识确实是独一无二的。为了评估这些器件,需要mK传输测量来建立关键指标,如量子相干性和门保真度。在这里,我们汇集了几个在这方面有长期记录的小组(伦敦大学学院,悉尼),以及在基准测试和量子纠错方面所需的理论基础(悉尼,麦吉尔)。尽管如此,为了充分理解设备性能,理解和准确地描绘出任何传统技术都无法实现的能量和空间分辨率的量子设备的性能是至关重要的。在我们的网络中,我们有能力将传输测量与器件的mK扫描门映射(剑桥)和纳米尺度上的单电子灵敏度(麦吉尔)结合起来。这项工作将集中在两个工作包中,第一个工作包侧重于构建所需的量子位制造和器件结构,而第二个工作包将侧重于在物理分离的量子位之间创建纠缠。将这些关键能力和研究成果结合到一个单一的网络中,使我们能够在量子器件开发和表征方面大大超越当前的技术水平,从而可以建立可靠和可行的原型。除了第一个原型之外,该网络还将致力于平台的可扩展性,包括设备制造(UCL)和所需的经典低温控制电子设备(悉尼)。另一个好处是,研究小组在数据采集、材料表征以及硬件和软件开发方面与行业领导者紧密结合。为了确保我们的研究能够接触到广泛的受众,并为所有相关利益相关者提供服务,我们将有一个专门的外展计划(悉尼领导)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Neil Curson其他文献

Polythiophene nanofibres for optoelectronic applications
用于光电应用的聚噻吩纳米纤维
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nico Seidler;Neil Curson;G. M. Lazzerini;G. Destri;Giovanni Marletta;Oliver Fenwick;F. D. Stasio
  • 通讯作者:
    F. D. Stasio

Neil Curson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Neil Curson', 18)}}的其他基金

Room-Temperature Single Atom Silicon Quantum Electronics
室温单原子硅量子电子学
  • 批准号:
    EP/V027700/1
  • 财政年份:
    2021
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Research Grant
Nanoscale Germanium Electronics
纳米级锗电子
  • 批准号:
    EP/I02865X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Research Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
  • 批准号:
    52301178
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
  • 批准号:
    12305290
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
  • 批准号:
    82371110
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
  • 批准号:
    12375280
  • 批准年份:
    2023
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
CuAgSe基热电材料的结构特性与构效关系研究
  • 批准号:
    22375214
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
  • 批准号:
    82003509
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Studentship
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
  • 批准号:
    EP/X039889/1
  • 财政年份:
    2024
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
  • 批准号:
    EP/X040380/1
  • 财政年份:
    2024
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Research Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Railway Quantum Inertial Navigation System for Condition Based Monitoring (Phase 2)
铁路量子惯性导航状态监测系统(二期)
  • 批准号:
    10107100
  • 财政年份:
    2024
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Small Business Research Initiative
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
  • 批准号:
    2423960
  • 财政年份:
    2024
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Standard Grant
Quantum Hall plasmon resonator-based qubit sensing and multi-qubit coupling
基于量子霍尔等离子体谐振器的量子位传感和多量子位耦合
  • 批准号:
    24K06915
  • 财政年份:
    2024
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Orbital-based Descriptors for Dynamical Properties of Quantum Defects
职业:基于轨道的量子缺陷动力学特性描述符
  • 批准号:
    2340733
  • 财政年份:
    2024
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Continuing Grant
On-chip nuclear spin qubit platform based on individual erbium-167 ions in silicon photonic nanocavities for quantum repeaters
用于量子中继器的基于硅光子纳米腔中单个铒 167 离子的片上核自旋量子位平台
  • 批准号:
    23K26580
  • 财政年份:
    2024
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
High color purity and multicolor luminescence based on precise synthesis and electronic structure design of multinary quantum dots
基于多元量子点的精确合成和电子结构设计的高色纯度和多色发光
  • 批准号:
    23H01786
  • 财政年份:
    2023
  • 资助金额:
    $ 161.72万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了