CAREER: Dynamic Distributed Learning in Spiking Neural Networks with Neural Architecture Search

职业:具有神经架构搜索的尖峰神经网络中的动态分布式学习

基本信息

  • 批准号:
    2238227
  • 负责人:
  • 金额:
    $ 50.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-01-01 至 2027-12-31
  • 项目状态:
    未结题

项目摘要

Artificial Intelligence (AI) has enabled a plethora of applications today, ranging from the most recent chatbots that give you a human-like question/answer experience to autonomous driving cars. But, all these massive feats with AI incur huge costs in terms of energy, memory, and power consumption. In the past decade, Spiking Neural Networks (SNNs) have emerged as a low-power alternative to AI. SNN’s main attraction lies in the fact that they offer low-power architectural implementations, especially for arithmetic operations. Furthermore, unlike traditional neural networks, SNNs process information over time and the temporal dimension, if leveraged suitably, can help enable the next generation of AI applications at lower cost with better performance and robustness. However, training SNNs suitably for realistic tasks has been a long-standing challenge. This project innovates on fundamental optimization strategies, using the temporal features in SNNs to yield new architectures with diverse connectivity and sparsity that yield significant energy-efficiency benefits for distributed low-power edge computing applications. Furthermore, this research will support the interdisciplinary development of a diverse cohort of Ph.D. and undergraduate students and provides a unique education infrastructure to train the next generation of electrical and computer engineering researchers and practitioners.Today, deploying large-scale spiking neural networks (SNNs) for realistic computer vision and related tasks is a non-trivial challenge. This project targets two directions to build large-scale SNNs: 1) We innovate on Neural Architecture Search (NAS) to yield new SNN architectures with temporal feedback connections (that is in stark contrast to conventional feedforward deep learning networks). 2) We use the SNN-specific NAS optimization to perform distributed learning on multiple agents for vision tasks and demonstrate the benefits of using SNNs for low-power edge computing. Particularly, we develop a zero-shot approach that does not require training to search for the optimal network architecture while leveraging temporal and spatial sparsity with pruning and related techniques. This strategy is expected to shorten the design cycle of SNN architecture search by one to two orders of magnitude over existing work. The proposed NAS search will be integrated into a federated learning framework where multiple devices with different resources and data heterogeneity are learning together. Essentially, this project’s framework for discovering new SNN architectures can yield powerful and radical solutions for learning on multiple devices with extreme resource limitations to enable numerous distributed AI applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)今天已经启用了大量的应用程序,从最新的聊天机器人,为您提供类似人类的问题/答案体验到自动驾驶汽车。但是,所有这些人工智能的巨大成就都在能源、内存和功耗方面产生了巨大的成本。在过去的十年中,尖峰神经网络(SNN)已经成为人工智能的低功耗替代品。SNN的主要吸引力在于它们提供了低功耗的架构实现,特别是对于算术运算。此外,与传统神经网络不同,SNN随着时间的推移处理信息,如果适当利用时间维度,可以帮助以更低的成本实现下一代人工智能应用程序,并具有更好的性能和鲁棒性。然而,训练SNN适合现实任务一直是一个长期的挑战。该项目在基本优化策略上进行了创新,利用SNN中的时间特征产生具有不同连接性和稀疏性的新架构,为分布式低功耗边缘计算应用带来显著的能效优势。此外,这项研究将支持博士学位的多元化队列的跨学科发展。目前,为现实计算机视觉和相关任务部署大规模尖峰神经网络(SNN)是一项重大挑战。该项目针对构建大规模SNN的两个方向:1)我们在神经架构搜索(NAS)上进行创新,以产生具有时间反馈连接的新SNN架构(与传统的前馈深度学习网络形成鲜明对比)。2)我们使用SNN特定的NAS优化来对多个代理执行分布式学习,以执行视觉任务,并展示了使用SNN进行低功耗边缘计算的好处。特别是,我们开发了一种零拍摄方法,不需要训练来搜索最佳的网络架构,同时利用时间和空间稀疏性与修剪和相关技术。该策略有望将SNN架构搜索的设计周期缩短一到两个数量级。建议的NAS搜索将被集成到一个联合学习框架中,在这个框架中,具有不同资源和数据异构性的多个设备将一起学习。从本质上讲,该项目发现新SNN架构的框架可以产生强大而激进的解决方案,用于在极端资源限制的情况下在多个设备上学习,以实现众多分布式AI应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Priyadarshini Panda其他文献

Implicit adversarial data augmentation and robustness with Noise-based Learning
  • DOI:
    10.1016/j.neunet.2021.04.008
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Priyadarshini Panda;Kaushik Roy
  • 通讯作者:
    Kaushik Roy
Exploring the Effectiveness of Workplace Spirituality and Mindfulness Interventions: A Systematic Literature Review
The neurobench framework for benchmarking neuromorphic computing algorithms and systems
用于神经形态计算算法和系统基准测试的神经基准框架
  • DOI:
    10.1038/s41467-025-56739-4
  • 发表时间:
    2025-02-11
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Jason Yik;Korneel Van den Berghe;Douwe den Blanken;Younes Bouhadjar;Maxime Fabre;Paul Hueber;Weijie Ke;Mina A. Khoei;Denis Kleyko;Noah Pacik-Nelson;Alessandro Pierro;Philipp Stratmann;Pao-Sheng Vincent Sun;Guangzhi Tang;Shenqi Wang;Biyan Zhou;Soikat Hasan Ahmed;George Vathakkattil Joseph;Benedetto Leto;Aurora Micheli;Anurag Kumar Mishra;Gregor Lenz;Tao Sun;Zergham Ahmed;Mahmoud Akl;Brian Anderson;Andreas G. Andreou;Chiara Bartolozzi;Arindam Basu;Petrut Bogdan;Sander Bohte;Sonia Buckley;Gert Cauwenberghs;Elisabetta Chicca;Federico Corradi;Guido de Croon;Andreea Danielescu;Anurag Daram;Mike Davies;Yigit Demirag;Jason Eshraghian;Tobias Fischer;Jeremy Forest;Vittorio Fra;Steve Furber;P. Michael Furlong;William Gilpin;Aditya Gilra;Hector A. Gonzalez;Giacomo Indiveri;Siddharth Joshi;Vedant Karia;Lyes Khacef;James C. Knight;Laura Kriener;Rajkumar Kubendran;Dhireesha Kudithipudi;Shih-Chii Liu;Yao-Hong Liu;Haoyuan Ma;Rajit Manohar;Josep Maria Margarit-Taulé;Christian Mayr;Konstantinos Michmizos;Dylan R. Muir;Emre Neftci;Thomas Nowotny;Fabrizio Ottati;Ayca Ozcelikkale;Priyadarshini Panda;Jongkil Park;Melika Payvand;Christian Pehle;Mihai A. Petrovici;Christoph Posch;Alpha Renner;Yulia Sandamirskaya;Clemens J. S. Schaefer;André van Schaik;Johannes Schemmel;Samuel Schmidgall;Catherine Schuman;Jae-sun Seo;Sadique Sheik;Sumit Bam Shrestha;Manolis Sifalakis;Amos Sironi;Kenneth Stewart;Matthew Stewart;Terrence C. Stewart;Jonathan Timcheck;Nergis Tömen;Gianvito Urgese;Marian Verhelst;Craig M. Vineyard;Bernhard Vogginger;Amirreza Yousefzadeh;Fatima Tuz Zohora;Charlotte Frenkel;Vijay Janapa Reddi
  • 通讯作者:
    Vijay Janapa Reddi

Priyadarshini Panda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Priyadarshini Panda', 18)}}的其他基金

Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
合作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
  • 批准号:
    2312366
  • 财政年份:
    2023
  • 资助金额:
    $ 50.48万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328742
  • 财政年份:
    2023
  • 资助金额:
    $ 50.48万
  • 项目类别:
    Continuing Grant
CRII: SHF: Efficiency-Aware Robust Implementation of Neural Networks with Algorithm-Hardware Co-design
CRII:SHF:具有算法硬件协同设计的神经网络的效率感知稳健实现
  • 批准号:
    1947826
  • 财政年份:
    2020
  • 资助金额:
    $ 50.48万
  • 项目类别:
    Standard Grant

相似国自然基金

Dynamic Credit Rating with Feedback Effects
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
  • 批准号:
    2232720
  • 财政年份:
    2023
  • 资助金额:
    $ 50.48万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Technical Debt Management in Dynamic and Distributed Systems
合作研究:SHF:小型:动态和分布式系统中的技术债务管理
  • 批准号:
    2232721
  • 财政年份:
    2023
  • 资助金额:
    $ 50.48万
  • 项目类别:
    Standard Grant
ERI: Distributed Learning in Regulation of UAV Communication Networks with Dynamic UAV Lineup
ERI:动态无人机阵容的无人机通信网络调节中的分布式学习
  • 批准号:
    2412393
  • 财政年份:
    2023
  • 资助金额:
    $ 50.48万
  • 项目类别:
    Standard Grant
NSF-ANR: Precision of collective, distributed, dynamic gene regulation
NSF-ANR:集体、分布式、动态基因调控的精确性
  • 批准号:
    2209996
  • 财政年份:
    2023
  • 资助金额:
    $ 50.48万
  • 项目类别:
    Standard Grant
Spatio-temporal calibration of asynchronous distributed microhoone arrays in dynamic environment
动态环境下异步分布式微霍恩阵列时空校准
  • 批准号:
    23K11160
  • 财政年份:
    2023
  • 资助金额:
    $ 50.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Towards A Practical Model Predictive Control Framework for Networked and Distributed Dynamic Systems
面向网络和分布式动态系统的实用模型预测控制框架
  • 批准号:
    RGPIN-2016-05386
  • 财政年份:
    2022
  • 资助金额:
    $ 50.48万
  • 项目类别:
    Discovery Grants Program - Individual
Construction of a dynamic evacuation guidance system based on intelligent and distributed cooperative processing of evacuation guidance devices and disaster prevention sensors
基于疏散引导装置与防灾传感器智能分布式协同处理的动态疏散引导系统构建
  • 批准号:
    22K04639
  • 财政年份:
    2022
  • 资助金额:
    $ 50.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
ERI: Distributed Learning in Regulation of UAV Communication Networks with Dynamic UAV Lineup
ERI:动态无人机阵容的无人机通信网络调节中的分布式学习
  • 批准号:
    2138871
  • 财政年份:
    2022
  • 资助金额:
    $ 50.48万
  • 项目类别:
    Standard Grant
Studies on Multipurpose Distributed Constraint Optimization Problems under Dynamic Stochastic Environments with Disaster Relief Simulations
动态随机环境下多用途分布式约束优化问题与救灾模拟研究
  • 批准号:
    21K12039
  • 财政年份:
    2021
  • 资助金额:
    $ 50.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: CNS Core: Small: Dynamic Pricing and Procurement for Distributed Networked Platforms
合作研究:CNS 核心:小型:分布式网络平台的动态定价和采购
  • 批准号:
    2102963
  • 财政年份:
    2021
  • 资助金额:
    $ 50.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了