Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators

合作研究:FuSe:基于硒化铟的后端神经形态加速器

基本信息

  • 批准号:
    2328742
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

This project aims to use innovative materials called “2D materials” to enhance the capabilities of modern integrated circuits. These materials have unique electronic properties that make them very promising for compute, storage, and sensing technologies. However, integrating them with existing silicon-based technology has been a challenge due to temperature restrictions. Luckily, a new group of materials called “indium-based chalcogenides” offers a solution, as they can be synthesized at low temperatures compatible with current technology. The project team plans to create a range of devices using these materials to accelerate the performance of energy-efficient spiking neural networks (SNNs). These brain-inspired microchips will revolutionize how audio, visual, tactile, and olfactory information is processed, making devices smarter and more responsive. Moreover, these microchips could be used in autonomous vehicles, drones, and robots, helping them navigate and avoid obstacles. The project also focuses on training the next generation of scientists and engineers and promoting diversity and inclusivity in the field.This project aims to address the challenge of integrating novel 2D materials with the state-of-the-art silicon-based complementary metal oxide semiconductor (CMOS) technology at the back end of line (BEOL). The key innovation lies in leveraging indium-based chalcogenides, such as InSe and In2Se3, which can be synthesized at low temperatures, making them compatible with BEOL processes. The team plans to synthesize and characterize these materials to fabricate an array of sensing, encoding, computing, and memory devices for hardware acceleration of energy-efficient spiking neural networks (SNNs). The project will involve a cross-layer co-optimization approach that encompasses material discovery, synthesis and deposition techniques, process flow development, and device-circuit-architecture co-design. The goal is to develop brain-inspired SNN microchips through 2D/CMOS heterogeneous and monolithic integration, which will lead to substantial reductions in energy consumption and pave the way for sustainable computing paradigms. The broader impact of this work extends to applications on the Internet of Things (IoT) domain, where the brain-mimetic SNN microchips will enable advanced audio, visual, tactile, and olfactory information processing. Additionally, the project emphasizes education and training, promoting diversity and inclusiveness in the workforce.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在利用被称为“2D材料”的创新材料来增强现代集成电路的能力。这些材料具有独特的电子性能,使它们在计算、存储和传感技术方面非常有前途。然而,由于温度的限制,将它们与现有的基于硅的技术相结合一直是一个挑战。幸运的是,一组名为“铟基硫化物”的新材料提供了一种解决方案,因为它们可以在与当前技术兼容的低温下合成。该项目团队计划创造一系列使用这些材料的设备,以加快节能尖峰神经网络(SNN)的性能。这些受大脑启发的微芯片将彻底改变音频、视觉、触觉和嗅觉信息的处理方式,使设备更智能、更灵敏。此外,这些微芯片可以用于自动驾驶车辆、无人机和机器人,帮助它们导航和避开障碍物。该项目还专注于培训下一代科学家和工程师,促进该领域的多样性和包容性。该项目旨在解决在生产线后端(BEOL)将新型2D材料与最先进的硅基互补金属氧化物半导体(CMOS)技术相结合的挑战。关键的创新在于利用了铟基硫化物,如InSe和In2Se3,它们可以在低温下合成,使它们与BEOL工艺兼容。该团队计划合成和表征这些材料,以制造一系列传感、编码、计算和存储设备,用于节能尖峰神经网络(SNN)的硬件加速。该项目将涉及一种跨层联合优化方法,包括材料发现、合成和沉积技术、工艺流程开发以及设备-电路-架构联合设计。其目标是通过2D/CMOS异质和单片集成来开发受大脑启发的SNN微芯片,这将导致能源消耗的大幅降低,并为可持续计算范例铺平道路。这项工作的更广泛影响延伸到物联网(IoT)领域的应用,在物联网领域,模拟大脑的SNN微芯片将实现高级音频、视觉、触觉和嗅觉信息处理。此外,该项目强调教育和培训,促进劳动力的多样性和包容性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Priyadarshini Panda其他文献

Implicit adversarial data augmentation and robustness with Noise-based Learning
  • DOI:
    10.1016/j.neunet.2021.04.008
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Priyadarshini Panda;Kaushik Roy
  • 通讯作者:
    Kaushik Roy
Exploring the Effectiveness of Workplace Spirituality and Mindfulness Interventions: A Systematic Literature Review
The neurobench framework for benchmarking neuromorphic computing algorithms and systems
用于神经形态计算算法和系统基准测试的神经基准框架
  • DOI:
    10.1038/s41467-025-56739-4
  • 发表时间:
    2025-02-11
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Jason Yik;Korneel Van den Berghe;Douwe den Blanken;Younes Bouhadjar;Maxime Fabre;Paul Hueber;Weijie Ke;Mina A. Khoei;Denis Kleyko;Noah Pacik-Nelson;Alessandro Pierro;Philipp Stratmann;Pao-Sheng Vincent Sun;Guangzhi Tang;Shenqi Wang;Biyan Zhou;Soikat Hasan Ahmed;George Vathakkattil Joseph;Benedetto Leto;Aurora Micheli;Anurag Kumar Mishra;Gregor Lenz;Tao Sun;Zergham Ahmed;Mahmoud Akl;Brian Anderson;Andreas G. Andreou;Chiara Bartolozzi;Arindam Basu;Petrut Bogdan;Sander Bohte;Sonia Buckley;Gert Cauwenberghs;Elisabetta Chicca;Federico Corradi;Guido de Croon;Andreea Danielescu;Anurag Daram;Mike Davies;Yigit Demirag;Jason Eshraghian;Tobias Fischer;Jeremy Forest;Vittorio Fra;Steve Furber;P. Michael Furlong;William Gilpin;Aditya Gilra;Hector A. Gonzalez;Giacomo Indiveri;Siddharth Joshi;Vedant Karia;Lyes Khacef;James C. Knight;Laura Kriener;Rajkumar Kubendran;Dhireesha Kudithipudi;Shih-Chii Liu;Yao-Hong Liu;Haoyuan Ma;Rajit Manohar;Josep Maria Margarit-Taulé;Christian Mayr;Konstantinos Michmizos;Dylan R. Muir;Emre Neftci;Thomas Nowotny;Fabrizio Ottati;Ayca Ozcelikkale;Priyadarshini Panda;Jongkil Park;Melika Payvand;Christian Pehle;Mihai A. Petrovici;Christoph Posch;Alpha Renner;Yulia Sandamirskaya;Clemens J. S. Schaefer;André van Schaik;Johannes Schemmel;Samuel Schmidgall;Catherine Schuman;Jae-sun Seo;Sadique Sheik;Sumit Bam Shrestha;Manolis Sifalakis;Amos Sironi;Kenneth Stewart;Matthew Stewart;Terrence C. Stewart;Jonathan Timcheck;Nergis Tömen;Gianvito Urgese;Marian Verhelst;Craig M. Vineyard;Bernhard Vogginger;Amirreza Yousefzadeh;Fatima Tuz Zohora;Charlotte Frenkel;Vijay Janapa Reddi
  • 通讯作者:
    Vijay Janapa Reddi

Priyadarshini Panda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Priyadarshini Panda', 18)}}的其他基金

CAREER: Dynamic Distributed Learning in Spiking Neural Networks with Neural Architecture Search
职业:具有神经架构搜索的尖峰神经网络中的动态分布式学习
  • 批准号:
    2238227
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
合作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
  • 批准号:
    2312366
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CRII: SHF: Efficiency-Aware Robust Implementation of Neural Networks with Algorithm-Hardware Co-design
CRII:SHF:具有算法硬件协同设计的神经网络的效率感知稳健实现
  • 批准号:
    1947826
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328741
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
  • 批准号:
    2328906
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Interconnects with Co-Designed Materials, Topology, and Wire Architecture
合作研究:FuSe:与共同设计的材料、拓扑和线路架构互连
  • 批准号:
    2328908
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: Collaborative Optically Disaggregated Arrays of Extreme-MIMO Radio Units (CODAeMIMO)
合作研究:FuSe:Extreme-MIMO 无线电单元的协作光学分解阵列 (CODAeMIMO)
  • 批准号:
    2328947
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
FuSe/Collaborative Research: Heterogeneous Integration in Power Electronics for High-Performance Computing (HIPE-HPC)
FuSe/合作研究:用于高性能计算的电力电子异构集成 (HIPE-HPC)
  • 批准号:
    2329063
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe: High-throughput Discovery of Phase Change Materials for Co-designed Electronic and Optical Computational Devices (PHACEO)
合作研究:FuSe:用于共同设计的电子和光学计算设备的相变材料的高通量发现(PHACEO)
  • 批准号:
    2329087
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了