CRII: SHF: Efficiency-Aware Robust Implementation of Neural Networks with Algorithm-Hardware Co-design

CRII:SHF:具有算法硬件协同设计的神经网络的效率感知稳健实现

基本信息

  • 批准号:
    1947826
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

With the advent of Internet-of-Things and the necessity to enable intelligence in embedded devices like mobile phones, wearables etc., low-power and secure hardware implementation of neural networks is vital. Despite achieving high performance and unprecedented classification accuracies on a variety of perception tasks, Deep Neural Networks (DNNs) have been shown to be adversarially vulnerable. For example, a DNN can be easily fooled into mis-classifying an input with slight changes of image-pixel intensities. This vulnerability severely limits the deployment and its use in safety-critical real-world tasks such as self-driving cars, malware detection, healthcare monitoring systems etc. This project investigates hardware aware techniques to resolve or resist software vulnerabilities (specifically, adversarial attacks) by exploring the design space of energy-accuracy-robustness trade-off cohesively with algorithm-hardware co-design to create functional intelligent systems. Thus, the project seeks to develop robustness-aware algorithms broadly applicable to the energy-efficient and secure implementation of DNN engines on both current CMOS accelerator platforms and emerging memory technologies. Furthermore, the research will support the interdisciplinary development of a diverse cohort of PhD and undergraduate students, and the development of a graduate-level course at Yale University on neural network architectures and learning algorithms tied with robustness from circuit and system design perspective.The technical aims of this project are divided into two thrusts. The first thrust develops robustness centred algorithms in DNNs where techniques such as quantization, pruning among others are used to improve the adversarial resilience of models while yielding energy-efficiency benefits. This part also identifies a new form of noise stability for DNNs, i.e., the sensitivity of each layer’s computation to adversarial noise. This allows for a principled way of applying layer-specific algorithmic modifications that incurs adversarial robustness as well as energy-efficiency with minimal loss in accuracy. The second thrust benchmarks and implements the proposed robust computing models on emerging technology-based memristor crossbar-array platforms to investigate the hardware-level benefits (while comparing with standard CMOS accelerator baselines). In particular, design issues and complexities for implementing variable precision, stochastic and combined stochastic-deterministic neuronal activity will be investigated. The two thrusts offer a fundamental co-design infrastructure where algorithmic innovations will be used to optimize robust and efficient hardware implementations for neural networks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着物联网的出现以及在嵌入式设备(如移动的电话、可穿戴设备等)中实现智能的必要性,神经网络的低功耗和安全硬件实现是至关重要的。尽管在各种感知任务上实现了高性能和前所未有的分类精度,但深度神经网络(DNN)已被证明是脆弱的。例如,DNN可以很容易地被愚弄,对图像像素强度略有变化的输入进行错误分类。该漏洞严重限制了部署及其在安全关键现实世界任务中的使用,例如自动驾驶汽车,恶意软件检测,医疗保健监控系统等。该项目研究硬件感知技术,通过探索能量-准确性-鲁棒性权衡的设计空间来解决或抵抗软件漏洞(特别是对抗性攻击),并与算法-硬件协同设计一起创建功能智能系统。因此,该项目旨在开发鲁棒性感知算法,广泛适用于当前CMOS加速器平台和新兴存储器技术上DNN引擎的节能和安全实现。此外,该研究还将支持博士生和本科生的跨学科发展,并在耶鲁大学开发研究生课程,从电路和系统设计的角度研究神经网络架构和学习算法与鲁棒性的关系。该项目的技术目标分为两个方面。第一个推力是开发DNN中以鲁棒性为中心的算法,其中使用量化、修剪等技术来提高模型的对抗性弹性,同时产生能效效益。本部分还确定了DNN的噪声稳定性的新形式,即,每层计算对对抗性噪声的敏感性。这允许以一种原则性的方式应用特定于层的算法修改,这种方法会带来对抗性的鲁棒性以及能量效率,同时准确性损失最小。第二个推力基准和实现新兴技术为基础的忆阻器交叉阵列平台上提出的强大的计算模型,以调查硬件级的好处(同时与标准的CMOS加速器基线比较)。特别是,设计问题和复杂性,实现可变精度,随机和组合随机确定性神经元活动将进行调查。这两个项目提供了一个基本的协同设计基础设施,其中算法创新将用于优化神经网络的强大和高效的硬件实现。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Priyadarshini Panda其他文献

Implicit adversarial data augmentation and robustness with Noise-based Learning
  • DOI:
    10.1016/j.neunet.2021.04.008
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Priyadarshini Panda;Kaushik Roy
  • 通讯作者:
    Kaushik Roy
Exploring the Effectiveness of Workplace Spirituality and Mindfulness Interventions: A Systematic Literature Review
The neurobench framework for benchmarking neuromorphic computing algorithms and systems
用于神经形态计算算法和系统基准测试的神经基准框架
  • DOI:
    10.1038/s41467-025-56739-4
  • 发表时间:
    2025-02-11
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Jason Yik;Korneel Van den Berghe;Douwe den Blanken;Younes Bouhadjar;Maxime Fabre;Paul Hueber;Weijie Ke;Mina A. Khoei;Denis Kleyko;Noah Pacik-Nelson;Alessandro Pierro;Philipp Stratmann;Pao-Sheng Vincent Sun;Guangzhi Tang;Shenqi Wang;Biyan Zhou;Soikat Hasan Ahmed;George Vathakkattil Joseph;Benedetto Leto;Aurora Micheli;Anurag Kumar Mishra;Gregor Lenz;Tao Sun;Zergham Ahmed;Mahmoud Akl;Brian Anderson;Andreas G. Andreou;Chiara Bartolozzi;Arindam Basu;Petrut Bogdan;Sander Bohte;Sonia Buckley;Gert Cauwenberghs;Elisabetta Chicca;Federico Corradi;Guido de Croon;Andreea Danielescu;Anurag Daram;Mike Davies;Yigit Demirag;Jason Eshraghian;Tobias Fischer;Jeremy Forest;Vittorio Fra;Steve Furber;P. Michael Furlong;William Gilpin;Aditya Gilra;Hector A. Gonzalez;Giacomo Indiveri;Siddharth Joshi;Vedant Karia;Lyes Khacef;James C. Knight;Laura Kriener;Rajkumar Kubendran;Dhireesha Kudithipudi;Shih-Chii Liu;Yao-Hong Liu;Haoyuan Ma;Rajit Manohar;Josep Maria Margarit-Taulé;Christian Mayr;Konstantinos Michmizos;Dylan R. Muir;Emre Neftci;Thomas Nowotny;Fabrizio Ottati;Ayca Ozcelikkale;Priyadarshini Panda;Jongkil Park;Melika Payvand;Christian Pehle;Mihai A. Petrovici;Christoph Posch;Alpha Renner;Yulia Sandamirskaya;Clemens J. S. Schaefer;André van Schaik;Johannes Schemmel;Samuel Schmidgall;Catherine Schuman;Jae-sun Seo;Sadique Sheik;Sumit Bam Shrestha;Manolis Sifalakis;Amos Sironi;Kenneth Stewart;Matthew Stewart;Terrence C. Stewart;Jonathan Timcheck;Nergis Tömen;Gianvito Urgese;Marian Verhelst;Craig M. Vineyard;Bernhard Vogginger;Amirreza Yousefzadeh;Fatima Tuz Zohora;Charlotte Frenkel;Vijay Janapa Reddi
  • 通讯作者:
    Vijay Janapa Reddi

Priyadarshini Panda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Priyadarshini Panda', 18)}}的其他基金

CAREER: Dynamic Distributed Learning in Spiking Neural Networks with Neural Architecture Search
职业:具有神经架构搜索的尖峰神经网络中的动态分布式学习
  • 批准号:
    2238227
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
合作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
  • 批准号:
    2312366
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: Indium selenides based back end of line neuromorphic accelerators
合作研究:FuSe:基于硒化铟的后端神经形态加速器
  • 批准号:
    2328742
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

天然超短抗菌肽Temporin-SHf衍生多肽的构效分析与抗菌机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGFR/GRβ/Shf调控环路在胶质瘤中的作用机制研究
  • 批准号:
    81572468
  • 批准年份:
    2015
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: SHF: Enhancing Serverless Efficiency Through Microarchitectural Checkpointing
职业:SHF:通过微架构检查点提高无服务器效率
  • 批准号:
    2237379
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
SHF: Small: Improving Efficiency of Vision Transformers via Software-Hardware Co-Design and Acceleration
SHF:小型:通过软硬件协同设计和加速提高视觉变压器的效率
  • 批准号:
    2233893
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: SHF: IMMENSE: In-Memory Machine Learning using Sneak-Paths in Crossbars for Robustness and Energy Efficiency
CRII:SHF:IMMENSE:使用交叉开关中的潜行路径实现稳健性和能源效率的内存中机器学习
  • 批准号:
    2245756
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Medium: Improving the Efficiency and Applicability of Decision Diagrams
SHF:中:提高决策图的效率和适用性
  • 批准号:
    2212142
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Turning Visual Noise into Hardware Efficiency: Viewer-Aware Energy-Quality Adaptive Mobile Video Storage
SHF:小:将视觉噪声转化为硬件效率:观看者感知的能源质量自适应移动视频存储
  • 批准号:
    1815430
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Turning Visual Noise into Hardware Efficiency: Viewer-Aware Energy-Quality Adaptive Mobile Video Storage
SHF:小:将视觉噪声转化为硬件效率:观看者感知的能源质量自适应移动视频存储
  • 批准号:
    1855706
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Hardware-Software Co-Designed Coherence: A Complete Coherence Solution for Performance-, Energy-, and Complexity-Efficiency
SHF:小型:硬件-软件协同设计的一致性:针对性能、能源和复杂性效率的完整一致性解决方案
  • 批准号:
    1619245
  • 财政年份:
    2016
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Optimizing Consolidation Efficiency of Emerging Virtualized Cloud Applications on Contemporary Server Architecture
SHF:小型:优化当代服务器架构上新兴虚拟化云应用程序的整合效率
  • 批准号:
    1527535
  • 财政年份:
    2015
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Medium: Programmability, Portability, Performance and Energy Efficiency for Heterogeneous Systems
SHF:中:异构系统的可编程性、可移植性、性能和能源效率
  • 批准号:
    1302641
  • 财政年份:
    2013
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
SHF: Small: Enhancing Power, Performance, and Resource Efficiency of Many-core NoCs
SHF:小型:增强多核 NoC 的功耗、性能和资源效率
  • 批准号:
    1321131
  • 财政年份:
    2013
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了