CAREER: Scalable and Adaptable Sparsity-driven Methods for more Efficient AI Systems
职业:可扩展且适应性强的稀疏驱动方法,可实现更高效的人工智能系统
基本信息
- 批准号:2238291
- 负责人:
- 金额:$ 55.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-01 至 2028-02-29
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Artificial Intelligence (AI) and, in particular, Deep Neural Networks (DNN) have achieved better than human accuracy on many cognitive tasks involving images, natural language processing, and protein structure, among others. Unfortunately, due to high data processing demands, AI systems are typically run on power-hungry specialized computing hardware. Quantization, or approximation to smaller numerical values, has been used to reduce computing requirements. However, the fixed low bit-width DNNs may suffer losses in accuracy due to quantization errors. Many existing software solutions for quantization are also fixed or limited in bit-width choices. To address this trade-off and leverage data sparsity, the research team will investigate state-of-the-art methods and develop novel data quantization, encoding, and compression algorithms to integrate with existing AI systems. The methods developed have the potential to not only improve performance but also to reduce power requirements and boost the energy efficiency of AI systems. They will enable AI applications such as DNN inference on small devices, thus reducing the load on cloud infrastructure, improving user experience, providing data privacy, and avoiding security risks. The work proposed in this project has the potential to push the boundaries in many AI applications that run on energy storage-constrained devices, such as smart sensing, wearable devices, and autonomous driving. The research and educational tools will facilitate and increase student and research community participation in advancing AI research. The work will be conducted at a minority-serving institution, and the funding will support students from underrepresented groups.The research goal of this project is to investigate quantization and compression methods that can leverage sparsity and improve efficiency in AI systems. The principal investigator (PI) plans to study adaptable quantization and compression methods to leverage sparsity in AI systems while minimizing the overhead in non-sparse situations and minimizing accuracy loss. The trade-off between accuracy and performance with the proposed methods will be studied and defined for automated tunable prioritization of either accuracy, performance, or energy efficiency. The PI plans to develop a prototype with parallel execution of the proposed methods to make the proposed methods truly effective for data centers and advanced hardware architectures. The proposed methods will be packaged into an AI vector primitives library that will be integrated with several popular Deep Learning frameworks as proof of concept, primarily targeting GPU and CPU systems. An integration API will be developed for frameworks like Pytorch or TensorFlow to allow easy integration with other vector primitives. Software libraries will be integrated with a web-based learning platform with automated feedback and a motivating environment to encourage student participation in solving AI challenges.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多涉及图像,自然语言处理和蛋白质结构等的认知任务上,人工智能(AI),尤其是深层神经网络(DNN)在许多认知任务上取得了更好的成就。 不幸的是,由于高数据处理需求,AI系统通常在渴望强力的专业计算硬件上运行。 量化或近似较小的数值值已用于减少计算要求。 但是,固定的低位宽度DNN可能由于量化错误而遭受准确性损失。 许多现有的用于量化的软件解决方案也固定或限制位宽度选择。 为了解决这一权衡并利用数据稀疏性,研究团队将研究最新方法,并开发新的数据量化,编码和压缩算法,以与现有的AI系统集成。 开发的方法不仅有可能提高性能,还可以降低功率需求并提高AI系统的能源效率。 他们将启用AI应用程序,例如小型设备上的DNN推断,从而减少云基础架构的负载,改善用户体验,提供数据隐私并避免安全风险。 该项目中提出的工作有可能在许多AI应用程序中突破界限,这些应用程序在能源受限的设备上运行,例如智能传感,可穿戴设备和自动驾驶。 研究和教育工具将促进并增加学生和研究社区参与推进AI研究。 这项工作将在少数派服务机构进行,资金将支持来自代表性不足的群体的学生。该项目的研究目标是研究可以利用稀疏性并提高AI系统效率的量化和压缩方法。 首席研究者(PI)计划研究适应性的量化和压缩方法,以利用AI系统中的稀疏性,同时最大程度地减少非偏差情况下的开销,并最大程度地减少准确性损失。 将研究和定义精度和拟议方法之间的精度和性能之间的权衡,以自动化精度,性能或能源效率的优先级。 PI计划通过并行执行提出的方法来开发原型,以使所提出的方法真正有效地对数据中心和高级硬件体系结构有效。 所提出的方法将包装到AI向量原始库中,该库将与几个流行的深度学习框架集成为概念证明,主要针对GPU和CPU系统。 将为Pytorch或TensorFlow等框架开发集成API,以便于与其他向量原始图的集成。 软件库将与一个基于网络的学习平台集成,该平台具有自动反馈和激励环境,以鼓励学生参与解决AI挑战。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子的评估来提供支持的,并具有更广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gheorghi Guzun其他文献
Distributed indexing and scalable query processing for interactive big data explorations
- DOI:
10.17077/etd.ghz38eku - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Gheorghi Guzun - 通讯作者:
Gheorghi Guzun
Slicing the Dimensionality: Top-k Query Processing for High-Dimensional Spaces
维度切片:高维空间的 Top-k 查询处理
- DOI:
10.1007/978-3-662-45714-6_2 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Gheorghi Guzun;Joel E. Tosado;G. Canahuate - 通讯作者:
G. Canahuate
Multidimensional Preference Query Optimization on Infrastructure Monitoring Systems
基础设施监控系统多维偏好查询优化
- DOI:
10.1109/bigdata47090.2019.9005666 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yinghua Qin;Gheorghi Guzun - 通讯作者:
Gheorghi Guzun
Gheorghi Guzun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向智能网卡的可扩展FPGA包分类技术研究
- 批准号:62372123
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向高并发软件的可扩展建模与分析技术研究
- 批准号:62302375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于随机化的高效可扩展深度学习算法研究
- 批准号:62376131
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
包含时空维度的可扩展光MIMO解调芯片与均衡器
- 批准号:62335019
- 批准年份:2023
- 资助金额:225.00 万元
- 项目类别:重点项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
- 批准号:62371039
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Adaptable and scalable electroporation for cellular therapy
用于细胞治疗的适应性和可扩展的电穿孔
- 批准号:
10545845 - 财政年份:2022
- 资助金额:
$ 55.03万 - 项目类别:
FMRG: Adaptable and Scalable Robot Teleoperation for Human-in-the-Loop Assembly
FMRG:用于人在环装配的适应性和可扩展的机器人远程操作
- 批准号:
2037101 - 财政年份:2021
- 资助金额:
$ 55.03万 - 项目类别:
Standard Grant
ePACE: automation platforms for adaptable and scalable continuous evolution of biomolecules with therapeutic potential
ePACE:自动化平台,用于具有治疗潜力的生物分子的适应性和可扩展的持续进化
- 批准号:
10734591 - 财政年份:2019
- 资助金额:
$ 55.03万 - 项目类别:
CAREER: Scalable and Adaptable Cross-Domain Autonomous Health Assessment
职业:可扩展且适应性强的跨域自主健康评估
- 批准号:
1750936 - 财政年份:2018
- 资助金额:
$ 55.03万 - 项目类别:
Continuing Grant
EAGER/Collaborative Research: Web-architectures for Extensible, Adaptable and Scalable Manufacturing
EAGER/协作研究:可扩展、适应性和可扩展制造的网络架构
- 批准号:
1322748 - 财政年份:2013
- 资助金额:
$ 55.03万 - 项目类别:
Standard Grant