FMRG: Adaptable and Scalable Robot Teleoperation for Human-in-the-Loop Assembly
FMRG:用于人在环装配的适应性和可扩展的机器人远程操作
基本信息
- 批准号:2037101
- 负责人:
- 金额:$ 374.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The COVID-19 pandemic has accelerated the adoption of remote working in many industries. The ability for employees to work remotely, often from home, has become crucial to an organization's long-term resilience and growth potential. However, while advances in software and networking have made it possible for information workers to work remotely, most manufacturing workers cannot, because the infrastructure that is needed doesn't exist. This Future Manufacturing (FM) project will research an adaptable and scalable robot teleoperation system that allows factory workers to work remotely. The research will benefit both the manufacturing industry and the workforce by increasing access to manufacturing employment and improving working conditions and safety. By combining human-in-the-loop design with machine learning, this research can broaden the adoption of automation in manufacturing to new tasks. Beyond manufacturing, the research will also lower the entry barrier to using robotic systems for a wide range of real-world applications, such as assistive and service robots. The research team is collaborating with NYDesigns and LaGuardia Community College to translate research results to industrial partners and develop training programs to educate and prepare the future manufacturing workforce.This research suggests three key ideas to enable human-in-the-loop assembly: First, the system uses a physical scene understanding algorithm that converts the real-world robot workspace into a virtual manipulable three-dimensional scene representation. Next, a three-dimensional Virtual Reality user interface will be used to allow users to specify high-level task goals using this scene representation. Finally, the system uses a goal-driven reinforcement learning algorithm to infer an effective planning policy, given the task goals and the robot configuration. This system can overcome several limitations of existing teleoperation systems. By separating high-level task planning from low-level robot control using a physical scene representation, the system allows the operator to specify task goals without having expert knowledge of the robot hardware and configuration. By using reinforcement learning for low-level control, the system is more generalizable to new tasks and hardware.This award is co-funded by the Divisions of Civil Mechanical and Manufacturing Innovation, Electrical, Communications and Cyber Systems, Computer and Network Systems, Undergraduate Education, and Behavioral and Cognitive Sciences and the Cyber Physical Systems, NSF Scholarships in Science, Technology, Engineering, and Mathematics, and Advanced Technological Education Programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
COVID-19大流行已加速了在许多行业的远程工作。员工经常在家中远程工作的能力对组织的长期韧性和增长潜力至关重要。但是,尽管软件和网络的进步使信息工作者可以远程工作,但大多数制造业工人都不能,因为不存在所需的基础架构。这个未来的制造项目(FM)项目将研究一个适应性和可扩展的机器人遥控系统,该系统使工厂工人可以远程工作。这项研究将通过增加获得制造业就业机会并改善工作条件和安全性来使制造业和劳动力受益。通过将人类的设计与机器学习相结合,这项研究可以扩大制造业中自动化的采用。除制造业外,该研究还将降低进入障碍,以在辅助和服务机器人等广泛的现实应用程序中使用机器人系统。 The research team is collaborating with NYDesigns and LaGuardia Community College to translate research results to industrial partners and develop training programs to educate and prepare the future manufacturing workforce.This research suggests three key ideas to enable human-in-the-loop assembly: First, the system uses a physical scene understanding algorithm that converts the real-world robot workspace into a virtual manipulable three-dimensional scene representation.接下来,将使用三维虚拟现实用户界面来允许用户使用此场景表示形式指定高级任务目标。最后,考虑到任务目标和机器人配置,系统使用目标驱动的增强学习算法来推断有效的计划政策。该系统可以克服现有的远程操作系统的几个局限性。通过使用物理场景表示形式将高级任务计划与低级机器人控件分开,该系统允许操作员在不具有机器人硬件和配置的专家知识的情况下指定任务目标。通过使用强化学习来进行低级控制,该系统更容易被新任务和硬件概括。该奖项由民用机械和制造创新,电气,通信和网络系统,计算机和网络系统,教育以及行为和认知科学以及网络物理系统,NSF技术,技术,机构,机构,机构,机构,机构,机构,机构,机构,机构,机构和机构的奖项共同资助。奖项反映了NSF的法定任务,并通过使用基金会的智力优点和更广泛的影响审查标准评估值得支持。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Testbed for Exploring Virtual Reality User Interfaces for Assigning Tasks to Agents at Multiple Sites
用于探索虚拟现实用户界面以将任务分配给多个站点的代理的测试平台
- DOI:10.1145/3607822.3618004
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liu, Jen-Shuo;Wang, Chongyang;Tversky, Barbara;Feiner, Steven
- 通讯作者:Feiner, Steven
TANDEM: Learning Joint Exploration and Decision Making With Tactile Sensors
TANDEM:使用触觉传感器学习联合探索和决策
- DOI:10.1109/lra.2022.3193466
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Xu, Jingxi;Song, Shuran;Ciocarlie, Matei
- 通讯作者:Ciocarlie, Matei
Using Multi-Level Precueing to Improve Performance in Path-Following Tasks in Virtual Reality
使用多级预提示提高虚拟现实中路径跟踪任务的性能
- DOI:10.1109/tvcg.2021.3106476
- 发表时间:2021
- 期刊:
- 影响因子:5.2
- 作者:Liu, Jen-Shuo;Elvezio, Carmine;Tversky, Barbara;Feiner, Steven
- 通讯作者:Feiner, Steven
Precueing Sequential Rotation Tasks in Augmented Reality
在增强现实中预先执行顺序旋转任务
- DOI:10.1145/3562939.3565641
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Liu, Jen-Shuo;Tversky, Barbara;Feiner, Steven
- 通讯作者:Feiner, Steven
Cueing Sequential 6DoF Rigid-Body Transformations in Augmented Reality
增强现实中的连续 6DoF 刚体变换
- DOI:10.1109/ismar59233.2023.00050
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Liu, Jen-Shuo;Tversky, Barbara;Feiner, Steven
- 通讯作者:Feiner, Steven
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Feiner其他文献
Augmented Reality and Virtual Reality for Ice-Sheet Data Analysis
用于冰盖数据分析的增强现实和虚拟现实
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
A. Boghosian;S. Cordero;Carmine Elvezio;Sofia Sanchez;Ben Yang;Shengyue Guo;Qazi Ashikin;Joel Salzman;Kirsty Tinto;Steven Feiner;Robin Bell - 通讯作者:
Robin Bell
Interaction and presentation techniques for situated visualization
情景可视化的交互和演示技术
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Steven Feiner;Sean White - 通讯作者:
Sean White
Steven Feiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Feiner', 18)}}的其他基金
REU Site: Collaborative: Making Augmented and Virtual Reality Accessible
REU 网站:协作:让增强现实和虚拟现实变得触手可及
- 批准号:
2051053 - 财政年份:2021
- 资助金额:
$ 374.92万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Augmented Reality for Multiple People, Perspectives, Platforms, and Tasks
CHS:媒介:协作研究:多人、视角、平台和任务的增强现实
- 批准号:
1514429 - 财政年份:2015
- 资助金额:
$ 374.92万 - 项目类别:
Continuing Grant
Workshop: UIST 2012 Doctoral Symposium
研讨会:UIST 2012博士生研讨会
- 批准号:
1245112 - 财政年份:2012
- 资助金额:
$ 374.92万 - 项目类别:
Standard Grant
WORKSHOP: UIST 2011 Doctoral Symposium
研讨会:UIST 2011 博士生研讨会
- 批准号:
1137247 - 财政年份:2011
- 资助金额:
$ 374.92万 - 项目类别:
Standard Grant
HCC: Medium: Collaborative Research: Generating Effective Dynamic Explanations in Augmented Reality
HCC:媒介:协作研究:在增强现实中生成有效的动态解释
- 批准号:
0905569 - 财政年份:2009
- 资助金额:
$ 374.92万 - 项目类别:
Continuing Grant
Workshop: User Interface Software and Technology (UIST) 2009 Doctoral Symposium
研讨会:用户界面软件与技术(UIST)2009年博士生研讨会
- 批准号:
0948521 - 财政年份:2009
- 资助金额:
$ 374.92万 - 项目类别:
Standard Grant
ITR: Environment Management for Hybrid User Interfaces
ITR:混合用户界面的环境管理
- 批准号:
0082961 - 财政年份:2000
- 资助金额:
$ 374.92万 - 项目类别:
Continuing Grant
CISE Research Instrumentation: Software Technology for Small, Mobile Computers with Advanced User Interfaces
CISE 研究仪器:具有高级用户界面的小型移动计算机的软件技术
- 批准号:
9223009 - 财政年份:1993
- 资助金额:
$ 374.92万 - 项目类别:
Standard Grant
相似国自然基金
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
基于“活态-原真”关联协同的历史街区存量资源适应性再生研究
- 批准号:52308008
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
力学行为演变机理下泡沫沥青新装置适应性设计方法研究
- 批准号:52375230
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
宏观创新追赶战略、适应性学习与企业创新行为选择
- 批准号:72303033
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国斑翅果蝇自然种群多样性及对果实寄主适应性的分子遗传机制
- 批准号:32370662
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: Scalable and Adaptable Sparsity-driven Methods for more Efficient AI Systems
职业:可扩展且适应性强的稀疏驱动方法,可实现更高效的人工智能系统
- 批准号:
2238291 - 财政年份:2023
- 资助金额:
$ 374.92万 - 项目类别:
Continuing Grant
Adaptable and scalable electroporation for cellular therapy
用于细胞治疗的适应性和可扩展的电穿孔
- 批准号:
10545845 - 财政年份:2022
- 资助金额:
$ 374.92万 - 项目类别:
ePACE: automation platforms for adaptable and scalable continuous evolution of biomolecules with therapeutic potential
ePACE:自动化平台,用于具有治疗潜力的生物分子的适应性和可扩展的持续进化
- 批准号:
10734591 - 财政年份:2019
- 资助金额:
$ 374.92万 - 项目类别:
CAREER: Scalable and Adaptable Cross-Domain Autonomous Health Assessment
职业:可扩展且适应性强的跨域自主健康评估
- 批准号:
1750936 - 财政年份:2018
- 资助金额:
$ 374.92万 - 项目类别:
Continuing Grant
EAGER/Collaborative Research: Web-architectures for Extensible, Adaptable and Scalable Manufacturing
EAGER/协作研究:可扩展、适应性和可扩展制造的网络架构
- 批准号:
1322748 - 财政年份:2013
- 资助金额:
$ 374.92万 - 项目类别:
Standard Grant