CAREER: Overparameterization in modern machine learning: A panacea or a pitfall?

职业:现代机器学习中的过度参数化:万能药还是陷阱?

基本信息

  • 批准号:
    2239151
  • 负责人:
  • 金额:
    $ 58.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-07-01 至 2028-06-30
  • 项目状态:
    未结题

项目摘要

Deep neural networks overwhelmingly dominate the empirical machine learning landscape. Their state-of-the-art performance, however, remains poorly understood, brittle, and resource-intensive to obtain. In particular, their good generalization properties, or their ability to make accurate predictions on previously unseen data, are largely unexplained. Especially unusual is that, in contrast to classical machine learning models, state-of-the-art neural networks are frequently heavily overparameterized; that is, much “larger” than their training data set. Recent research has revealed a better understanding of the possible benefits of such overparameterization, but only in elementary model families. The ramifications of overparameterization in deep neural networks, which exhibit complex and distinct behaviors, present many unknowns. In the absence of a first-principles theory, outstanding failure modes in deep neural networks remain unmitigated or unnecessarily costly to solve, and architecture selection is conducted in a wasteful trial-and-error manner that involves repeated train-and-test cycles. This limits deep learning technology from reaching its full potential, particularly in high-stakes and resource-limited applications.This project will bridge the gap between the recent theory of overparameterized linear models and real-world neural networks through a diversity of mathematical techniques spanning signal processing, information theory, and online decision-making. In particular, the project will: 1) examine the implications of overparameterization on the test regression and classification performance of deep neural networks; 2) characterize the robustness of overparameterized models (both linear and nonlinear) to adversarial perturbations and significant shifts in the data distribution; and 3) design robust principles for data-driven model selection in modern machine learning. Ultimately, this project aims to establish foundational mathematical principles to explain not only the successful generalization of modern machine learning, but also its failure modes---in turn paving the way for developing efficient and principled solutions. This project will also create and disseminate educational resources at the high school and undergraduate levels on elementary signal processing, machine learning, and data science that underlie and complement the described research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络在经验机器学习领域占据绝对主导地位。然而,它们的最先进性能仍然知之甚少,脆弱,而且要获得资源密集型。特别是,它们良好的泛化特性,或者它们对以前看不见的数据进行准确预测的能力,在很大程度上是无法解释的。特别不寻常的是,与经典的机器学习模型相比,最先进的神经网络经常被严重过度参数化;也就是说,比它们的训练数据集“大”得多。最近的研究表明,更好地了解这种overparameterization可能带来的好处,但只有在基本模型的家庭。深度神经网络中过度参数化的后果表现出复杂而独特的行为,存在许多未知数。在缺乏第一性原理理论的情况下,深度神经网络中的突出故障模式仍然无法缓解或解决成本不必要,并且架构选择是以浪费的试错方式进行的,涉及重复的训练和测试周期。这限制了深度学习技术充分发挥其潜力,特别是在高风险和资源有限的应用中。该项目将通过跨越信号处理、信息论和在线决策的多种数学技术,弥合最近的过参数化线性模型理论与现实世界神经网络之间的差距。特别是,该项目将:1)研究过度参数化对深度神经网络的测试回归和分类性能的影响; 2)描述过度参数化模型(线性和非线性)对对抗性扰动和数据分布显著变化的鲁棒性; 3)为现代机器学习中的数据驱动模型选择设计鲁棒性原则。最终,该项目旨在建立基本的数学原理,不仅解释现代机器学习的成功推广,还解释其失败模式,从而为开发高效和有原则的解决方案铺平道路。该项目还将在高中和本科阶段创建和传播基础信号处理、机器学习和数据科学方面的教育资源,这些资源是所述研究的基础和补充。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vidya Muthukumar其他文献

New Equivalences Between Interpolation and SVMs: Kernels and Structured Features
插值和 SVM 之间的新等价关系:内核和结构化特征
  • DOI:
    10.48550/arxiv.2305.02304
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chiraag Kaushik;Andrew D. McRae;M. Davenport;Vidya Muthukumar
  • 通讯作者:
    Vidya Muthukumar
Estimating Optimal Policy Value in General Linear Contextual Bandits
估计一般线性上下文强盗的最优策略价值
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Lee;Weihao Kong;Aldo Pacchiano;Vidya Muthukumar;E. Brunskill
  • 通讯作者:
    E. Brunskill
Color-Theoretic Experiments to Understand Unequal Gender Classification Accuracy From Face Images
Commitment in regulatory spectrum games: Examining the first-player advantage
监管频谱博弈中的承诺:检验先发优势
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
过参数化线性模型中的分类和对抗示例:信号处理的角度
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Adhyyan Narang;Vidya Muthukumar;A. Sahai
  • 通讯作者:
    A. Sahai

Vidya Muthukumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vidya Muthukumar', 18)}}的其他基金

CIF: RI: Medium: Design principles and theory for data augmentation
CIF:RI:中:数据增强的设计原理和理论
  • 批准号:
    2212182
  • 财政年份:
    2022
  • 资助金额:
    $ 58.46万
  • 项目类别:
    Standard Grant

相似海外基金

Overparameterization, Global Convergence of the Expectation-Maximization Algorithm, and Beyond
过度参数化、期望最大化算法的全局收敛及其他
  • 批准号:
    2112918
  • 财政年份:
    2021
  • 资助金额:
    $ 58.46万
  • 项目类别:
    Standard Grant
Label-Imbalanced and Group-Sensitive Classification under Overparameterization
过度参数化下的标签不平衡和组敏感分类
  • 批准号:
    564508-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 58.46万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了