Overparameterization, Global Convergence of the Expectation-Maximization Algorithm, and Beyond
过度参数化、期望最大化算法的全局收敛及其他
基本信息
- 批准号:2112918
- 负责人:
- 金额:$ 37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The expectation-maximization (EM) algorithm is among the most popular algorithms for statistical inference. Despite a wide range of successful applications in both statistics and machine learning, there is little finite-sample theoretical analysis explaining the effectiveness of EM and its variants. Recently, there have been some encouraging successes on the global convergence guarantee of the EM algorithm, but often under unrealistic and impractical assumptions. The PI will integrate the recent success of overparametrization in deep learning with EM to overcome the aforementioned limitations. The research presented in this project will significantly advance the celebrated algorithms in statistics and machine learning including EM, mean-field variational inference, and Gibbs sampling by providing guarantees of global convergence and statistical optimalities. The research will help address the non-convex optimization challenges for a range of important and classical statistical models and shed light on the recent successes of deep learning. The wide range of applications of EM, mean-field variational inference, and Gibbs sampling and the importance of clustering ensure that the progress we make towards our objectives will have a great impact on the broad scientific community which includes neuroscience and medicine. Research results from this project will be disseminated through research articles, workshops, and seminar series to researchers in other disciplines. The project will integrate research and education by teaching monograph courses and organizing workshops and seminars to support graduate students and postdocs, particularly women, underrepresented minorities, domestic students, and young researchers, to work on this topic.The PI will develop methods for obtaining global convergence under possibly the weakest assumptions for a general class of latent variable models’ estimation with an unknown number of clusters. The PI will address the following questions: 1) can we show that the overparameterized EM converges globally to the true parameters without any separation condition and any knowledge of the number of clusters and cluster sizes under a certain distance (such as Wasserstein)? 2) how fast does the algorithm converge? 3) what are the parameter estimation and clustering error rates and how do they compare to the optimal statistical accuracy? and 4) if not optimal statistically, can we achieve the optimality by adding a second stage EM initialized by the output of the overparameterized EM? There are three aims to develop a comprehensive theory to analyze the overparameterized EM and go beyond: 1) studying the global convergence of overparameterized EM for Gaussian Mixtures for both parameter estimation and latent cluster recovery and statistical optimality of the two-stage EM, 2) extending the two-stage EM to its variants including two-stage mean-field variational inference and Gibbs sampling and considering a unified analysis for a class of overparameterized algorithms, and 3) extending the analysis for Gaussian mixtures to general location mixture models and Stochastic Block Models and possibly a unified framework of latent variable models. In addition, the PI will work closely with the Yale Child Study Center and Yale Therapeutic Radiology Department to explore the appropriate EM algorithm and its variants for neuroscience, autism spectrum disorder, and cancer risk stratification.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
期望最大化(EM)算法是最流行的统计推断算法之一。尽管在统计学和机器学习方面有广泛的成功应用,但很少有有限样本的理论分析来解释EM及其变体的有效性。近年来,EM算法在保证全局收敛方面取得了一些令人鼓舞的成果,但往往是在不现实和不切实际的假设下进行的。PI将把最近深度学习中的超参数化的成功与EM结合起来,以克服上述限制。通过提供全局收敛和统计最优性的保证,本项目中提出的研究将显著推进统计学和机器学习中的著名算法,包括EM、平均场变分推理和Gibbs抽样。这项研究将有助于解决一系列重要和经典统计模型的非凸优化挑战,并阐明深度学习最近的成功。EM、平均场变分推理和吉布斯抽样的广泛应用以及聚类法的重要性确保了我们朝着我们的目标取得的进展将对包括神经科学和医学在内的广泛科学界产生重大影响。该项目的研究成果将通过研究文章、研讨会和系列研讨会向其他学科的研究人员传播。该项目将通过教授专题课程和组织研讨会和研讨会来整合研究和教育,以支持研究生和博士后,特别是女性、代表性不足的少数民族、国内学生和年轻研究人员从事这一主题的工作。PI将为具有未知聚类的一般类别的潜变量模型的估计在可能最弱的假设下开发获得全局收敛的方法。PI将解决以下问题:1)我们能否证明过参数EM全局收敛到真实参数,而不需要任何分离条件,也不需要知道一定距离下的簇数和簇大小(如Wasserstein)?2)算法收敛的速度有多快?3)参数估计和聚类错误率是多少,它们与最优统计精度相比如何?4)如果统计上不是最优的,是否可以通过增加由过参数EM的输出初始化的第二阶段EM来实现最优性?1)研究高斯混合模型在参数估计和潜在簇恢复下的全局收敛和两阶段EM的统计最优性;2)将两阶段EM推广到它的变种,包括两阶段平均场变分推理和Gibbs抽样,并考虑对一类过参数算法的统一分析;3)将对高斯混合模型的分析推广到一般的位置混合模型和随机块模型,并可能建立一个潜在变量模型的统一框架。此外,PI将与耶鲁儿童研究中心和耶鲁治疗放射科密切合作,探索适用于神经科学、自闭症谱系障碍和癌症风险分层的EM算法及其变体。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal estimation of high-dimensional Gaussian location mixtures
- DOI:10.1214/22-aos2207
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Natalie Doss;Yihong Wu;Pengkun Yang;Harrison H. Zhou
- 通讯作者:Natalie Doss;Yihong Wu;Pengkun Yang;Harrison H. Zhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huibin Zhou其他文献
Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System
DDO-OFDM传输系统的三维自适应调制与编码
- DOI:
10.1109/jphot.2017.2690691 - 发表时间:
2017-04 - 期刊:
- 影响因子:2.4
- 作者:
Xi Chen;Zhenhua Feng;Ming Tang;Borui Li;Huibin Zhou;Songnian Fu;Deming Liu - 通讯作者:
Deming Liu
Near-Diffraction- and Near-Dispersion-Free OAM Pulse Having a Controllable Group Velocity by Coherently Combining Different Bessel Beams Based on Space-Time Correlations
基于时空相关性的不同贝塞尔光束相干组合获得群速度可控的近衍射和近色散OAM脉冲
- DOI:
10.1364/fio.2020.fm7c.7 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
K. Pang;K. Zou;Hao Song;Zhe Zhao;A. Minoofar;Runzhou Zhang;Cong Liu;Haoqian Song;Huibin Zhou;X. Su;N. Hu;M. Tur;A. Willner - 通讯作者:
A. Willner
Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications.
利用携带轨道角动量的结构化太赫兹光束的复用进行高容量通信。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.8
- 作者:
Huibin Zhou;X. Su;A. Minoofar;Runzhou Zhang;K. Zou;Hao Song;K. Pang;Haoqian Song;N. Hu;Zhe Zhao;A. Almaiman;S. Zach;M. Tur;A. Molisch;Hirofumi Sasaki;Doohwan Lee;A. Willner - 通讯作者:
A. Willner
Experimental Demonstration of Tunable Space-Time Wave Packets Carrying Time- and Longitudinal-Varying OAM
携带时变和纵变OAM的可调谐时空波包的实验演示
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
X. Su;K. Zou;Huibin Zhou;Hao Song;Yuxiang Duan;M. Karpov;T. Kippenberg;M. Tur;D. Christodoulides;A. Willner - 通讯作者:
A. Willner
Free-space mid-IR communications using wavelength and mode division multiplexing
使用波长和模分复用的自由空间中红外通信
- DOI:
10.1016/j.optcom.2023.129518 - 发表时间:
2023 - 期刊:
- 影响因子:2.4
- 作者:
A. Willner;K. Zou;K. Pang;Hao Song;Huibin Zhou;A. Minoofar;X. Su - 通讯作者:
X. Su
Huibin Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huibin Zhou', 18)}}的其他基金
Statistical and Computational Guarantees of Three Siblings: Expectation-Maximization, Mean-Field Variational Inference, and Gibbs Sampling
三兄弟的统计和计算保证:期望最大化、平均场变分推理和吉布斯采样
- 批准号:
1811740 - 财政年份:2018
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Empirical Process and Modern Statistical Decision Theory
经验过程与现代统计决策理论
- 批准号:
1534545 - 财政年份:2015
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
Optimal Estimation of Statistical Networks
统计网络的最优估计
- 批准号:
1507511 - 财政年份:2015
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
Estimation of Functionals of High Dimensional Covariance Matrices
高维协方差矩阵泛函的估计
- 批准号:
1209191 - 财政年份:2012
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Statistical Inference for High-Dimensional Data: Theory, Methodology and Applications
FRG:协作研究:高维数据的统计推断:理论、方法和应用
- 批准号:
0854975 - 财政年份:2009
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Innovation and Inventiveness in Statistical Methodologies
统计方法的创新和创造性
- 批准号:
0852498 - 财政年份:2008
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
CAREER: Asymptotic Statistical Decision Theory and Its Applications
职业:渐近统计决策理论及其应用
- 批准号:
0645676 - 财政年份:2007
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
- 批准号:40536030
- 批准年份:2005
- 资助金额:120.0 万元
- 项目类别:重点项目
相似海外基金
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
- 批准号:
2317826 - 财政年份:2023
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
- 批准号:
2317823 - 财政年份:2023
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
- 批准号:
2317822 - 财政年份:2023
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
- 批准号:
2317825 - 财政年份:2023
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
Collaborative Research: GCR: Convergence on Phosphorus Sensing for Understanding Global Biogeochemistry and Enabling Pollution Management and Mitigation
合作研究:GCR:融合磷传感以了解全球生物地球化学并实现污染管理和缓解
- 批准号:
2317824 - 财政年份:2023
- 资助金额:
$ 37万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track J: Predicting the effect of climate extremes on the food system to improve resilience of global and local food security
NSF 融合加速器轨道 J:预测极端气候对粮食系统的影响,以提高全球和地方粮食安全的抵御能力
- 批准号:
2236021 - 财政年份:2022
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track I: Mind over Matter: Socioresilient Materials Design: A New Paradigm For Addressing Global Challenges in Sustainability
NSF 融合加速器轨道 I:关注物质:社会弹性材料设计:应对全球可持续发展挑战的新范式
- 批准号:
2236190 - 财政年份:2022
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track I: Sustainable Materials for Global Challenges: Recycled Textile and Apparel Manufacturing Ecosystems (RETAME)
NSF 融合加速器轨道 I:应对全球挑战的可持续材料:再生纺织品和服装制造生态系统 (RETAME)
- 批准号:
2236100 - 财政年份:2022
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Workshop -- Accelerating Translational Materials R&D for Global Challenges
NSF Convergence Accelerator Workshop——加速翻译材料研发
- 批准号:
2122643 - 财政年份:2021
- 资助金额:
$ 37万 - 项目类别:
Standard Grant
On the Separation of Brain Migration and Brain Deformation Based on the Global Convergence Property of Depth Depth Matching
基于深度深度匹配全局收敛性的脑迁移与脑变形分离研究
- 批准号:
20K04407 - 财政年份:2020
- 资助金额:
$ 37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)