Conference on Chromatic Homotopy Theory and Related Areas
色同伦理论及相关领域会议
基本信息
- 批准号:2220741
- 负责人:
- 金额:$ 1.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This NSF award provides support for U.S. based participants of the conference “Chromatic Homotopy Theory and Friends", to be held at the Mittag-Leffler Institute, Djursholm, Sweden, during June 7-10, 2022. The meeting aims to bring together leading researchers, postdocs, and graduate students working in the field, with a focus on recruitment, retention and mentoring of women researchers, who form an under-represented group in mathematics. The event would provide an entry point to research in chromatic homotopy theory and opportunity to start collaboration. The activities are designed to attract early career researchers to the field and facilitate mentoring relationships with the goal of improved retention and continued success.Chromatic homotopy theory is a cornerstone in modern algebraic topology. It is a conceptual and computational framework for identifying and explaining large scale periodic patterns in stable homotopy groups. Beyond its original focus, chromatic homotopy theory has grown into an organizational principle with applications in areas such as algebraic geometry and modular representation theory. It provides a direct yet mysterious relationship between stable homotopy theory and number theory through modular and automorphic forms. This workshop will consist of an introductory series of lectures on chromatic homotopy, and additional invited and contributed lectures on adjacent areas, such as equivariant and motivic homotopy theory. Details are available at http://www.mittag-leffler.se/konferens/ewm-ems-summer school-chromatic-homotopy-theory-and-friends.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该NSF奖项为美国的参与者提供支持“色同伦理论和朋友”会议,将于2022年6月7日至10日在瑞典朱尔绍尔姆姆的Mittag-Leffler研究所举行。该会议旨在汇集在该领域工作的领先研究人员,博士后和研究生,重点是招聘,保留和指导女性研究人员,她们在数学领域代表性不足。 该活动将为色同伦理论的研究提供一个切入点,并有机会开始合作。这些活动旨在吸引早期的职业研究人员到该领域,并促进指导关系,以提高保留和持续成功的目标。色同伦理论是现代代数拓扑学的基石。它是一个概念和计算框架,用于识别和解释稳定同伦群中的大规模周期模式。除了它最初的重点,色同伦理论已经发展成为一个组织原则,在代数几何和模表示理论等领域的应用。它通过模和自守形式提供了稳定同伦理论和数论之间直接而神秘的关系。本次研讨会将包括一系列介绍性的讲座色同伦,并在相邻领域,如等变和motivic同伦理论额外邀请和贡献讲座。http://www.mittag-leffler.se/konferens/ewm-ems-summer该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irina Bobkova其他文献
[Role of the mechanisms of replicative cellular senescence in structural and functional changes of the vascular wall in chronic kidney disease].
复制性细胞衰老机制在慢性肾脏病血管壁结构和功能变化中的作用。
- DOI:
10.17116/terarkh2017896102-109 - 发表时间:
2017 - 期刊:
- 影响因子:0.3
- 作者:
T. Rudenko;Irina Bobkova;E. Kamyshova;I. Gorelova - 通讯作者:
I. Gorelova
The duality resolution at $$n=p=2$$
- DOI:
10.1007/s00209-025-03754-2 - 发表时间:
2025-05-08 - 期刊:
- 影响因子:1.000
- 作者:
Agnès Beaudry;Irina Bobkova;Hans-Werner Henn - 通讯作者:
Hans-Werner Henn
Heat shock proteins and kidney disease: perspectives of HSP therapy
- DOI:
10.1007/s12192-017-0790-0 - 发表时间:
2017-04-13 - 期刊:
- 影响因子:3.200
- 作者:
Natalia Chebotareva;Irina Bobkova;Evgeniy Shilov - 通讯作者:
Evgeniy Shilov
Bounding the $K(p-1)$-local exotic Picard group at $p>3$
将 $K(p-1)$-本地异域 Picard 组限制在 $p>3$
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Irina Bobkova;Andrea Lachmann;Ang Li;Alicia Lima;Vesna Stojanoska;Adela YiYu Zhang - 通讯作者:
Adela YiYu Zhang
Irina Bobkova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irina Bobkova', 18)}}的其他基金
CAREER: Decomposition, duality and Picard groups in chromatic homotopy theory
职业:色同伦理论中的分解、对偶性和皮卡德群
- 批准号:
2239362 - 财政年份:2023
- 资助金额:
$ 1.87万 - 项目类别:
Continuing Grant
Picard Groups and Duality in Chromatic Homotopy Theory at the Prime 2.
素数色同伦理论中的皮卡德群和对偶性 2。
- 批准号:
2005627 - 财政年份:2020
- 资助金额:
$ 1.87万 - 项目类别:
Standard Grant
相似海外基金
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 1.87万 - 项目类别:
Continuing Grant
Invertibility and deformations in chromatic homotopy theory
色同伦理论中的可逆性和变形
- 批准号:
2304797 - 财政年份:2023
- 资助金额:
$ 1.87万 - 项目类别:
Standard Grant
Chromatic homotopy theory, algebraic K-theory, and L-functions
色同伦理论、代数 K 理论和 L 函数
- 批准号:
2348963 - 财政年份:2023
- 资助金额:
$ 1.87万 - 项目类别:
Standard Grant
CAREER: Decomposition, duality and Picard groups in chromatic homotopy theory
职业:色同伦理论中的分解、对偶性和皮卡德群
- 批准号:
2239362 - 财政年份:2023
- 资助金额:
$ 1.87万 - 项目类别:
Continuing Grant
Chromatic homotopy theory, algebraic K-theory, and L-functions
色同伦理论、代数 K 理论和 L 函数
- 批准号:
2304719 - 财政年份:2023
- 资助金额:
$ 1.87万 - 项目类别:
Standard Grant
Rational and equivariant phenomena in chromatic homotopy theory
色同伦理论中的有理和等变现象
- 批准号:
2304781 - 财政年份:2023
- 资助金额:
$ 1.87万 - 项目类别:
Standard Grant
Equivariant Methods in Chromatic Homotopy Theory
色同伦理论中的等变方法
- 批准号:
2313842 - 财政年份:2023
- 资助金额:
$ 1.87万 - 项目类别:
Standard Grant
CAREER: From Equivariant Chromatic Homotopy Theory to Phases of Matter: Voyage to the Edge
职业生涯:从等变色同伦理论到物质相:走向边缘的航程
- 批准号:
2143811 - 财政年份:2022
- 资助金额:
$ 1.87万 - 项目类别:
Continuing Grant
Equivariant Methods in Chromatic Homotopy Theory
色同伦理论中的等变方法
- 批准号:
2104844 - 财政年份:2021
- 资助金额:
$ 1.87万 - 项目类别:
Standard Grant
Equivariant Approaches to Chromatic Homotopy
色同伦的等变方法
- 批准号:
2105019 - 财政年份:2021
- 资助金额:
$ 1.87万 - 项目类别:
Continuing Grant